Narrow your search

Library

ULiège (5)

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

VIVES (4)

More...

Resource type

book (11)


Language

English (11)


Year
From To Submit

2022 (10)

2018 (1)

Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
IFCEE 2018 : Innovations in Ground Improvement for Soils, Pavements, and Subgrades
Authors: --- --- ---
ISBN: 0784481598 Year: 2018 Publisher: Reston, Virginia : American Society of Civil Engineers,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Selected papers from the International Foundation Congress and Equipment Expo 2018, held in Orlando, Florida, March 5–10, 2018. Sponsored by the International Association of Foundation Drilling, Deep Foundations Institute, Pile Driving Contractors Association, and the Geo-Institute of ASCE. This Geotechnical Special Publication contains 50 peer-reviewed papers on ground improvement for soils, pavement, and subgrades. Topics include: ground improvement and seepage control; bio-based soil improvement; geosynthetic/fiber reinforcement; liquefaction and densification; stone columns, piers, and grouting; and pavements and subgrades. GSP 296 will be of interest to a wide range of geo-professionals, including engineering practitioners, geo-technologists, researchers, contractors, and equipment manufacturers and suppliers.


Book
Advances in Soil Pollution and Geotechnical Environment
Author:
ISBN: 3036561781 3036561773 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This is a reprint of articles from the Special Issue published online in the open access journal Applied Sciences (ISSN 2076-3417). This book addresses the most recent developments in soil pollution and restoration, contaminant hydrology, and ground disturbance to stimulate fruitful technical and scientific interactions between professionals.

Keywords

Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- groundwater --- hydrochemistry --- hexavalent chromium contamination --- water chemistry simulation --- construction disturbance --- replacement of embankment --- foamed cement banking technology --- post-construction settlement --- method of replacement thickness calculation --- steam injection --- ethanol --- azeotropic temperature --- heterogeneous aquifers --- nitrobenzene --- microbially induced carbonate precipitation (MICP) --- unsaturated soil --- soil-water characteristic curves --- matrix suction --- microstructure --- molecular dynamics --- mechanical properties --- montmorillonite --- basal spacing --- long-term freeze–thaw cycles --- composite heavy metal contamination --- morphological analysis --- solidification/stabilization --- groundwater level fluctuation zone --- nitrogen --- migration and transformation --- HYDRUS-1D model --- kinetic adsorption and desorption --- groundwater table fluctuations --- Pb --- migration --- experimental study --- unsaturated subgrade --- capillary barrier --- distress control of wetting --- xanthan gum --- silt --- water retention capacity --- strength --- wetting process --- microscopic tests --- overconsolidation effect --- thermal pore water pressure --- calculation method --- saturated clay --- additives --- compacted clay cover --- moisture retention --- gas diffusion barrier --- hydraulic conductivity --- tidal action --- silty-clay soil --- riparian hyporheic zone --- inorganic nitrogen --- occurrence characteristics --- influencing factors --- n/a --- long-term freeze-thaw cycles


Book
Progress of Fiber-Reinforced Composites : Design and Applications
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fiber-reinforced composite (FRC) materials are widely used in advanced structures and are often applied in order to replace traditional materials such as metal components, especially those used in corrosive environments. They have become essential materials for maintaining and strengthening existing infrastructure due to the fact that they combine low weight and density with high strength, corrosion resistance, and high durability, providing many benefits in performance and durability. Modified fiber-based composites exhibit better mechanical properties, impact resistance, wear resistance, and fire resistance. Therefore, the FRC materials have reached a significant level of applications ranging from aerospace, aviation, and automotive systems to industrial, civil engineering, military, biomedical, marine facilities, and renewable energy. In order to update the field of design and development of composites with the use of organic or inorganic fibers, a Special Issue entitled “Progress of Fiber-Reinforced Composites: Design and Applications” has been introduced. This reprint gathers and reviews the collection of twelve article contributions, with authors from Europe, Asia and America accepted for publication in the aforementioned Special Issue of Applied Sciences.


Book
Progress of Fiber-Reinforced Composites : Design and Applications
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fiber-reinforced composite (FRC) materials are widely used in advanced structures and are often applied in order to replace traditional materials such as metal components, especially those used in corrosive environments. They have become essential materials for maintaining and strengthening existing infrastructure due to the fact that they combine low weight and density with high strength, corrosion resistance, and high durability, providing many benefits in performance and durability. Modified fiber-based composites exhibit better mechanical properties, impact resistance, wear resistance, and fire resistance. Therefore, the FRC materials have reached a significant level of applications ranging from aerospace, aviation, and automotive systems to industrial, civil engineering, military, biomedical, marine facilities, and renewable energy. In order to update the field of design and development of composites with the use of organic or inorganic fibers, a Special Issue entitled “Progress of Fiber-Reinforced Composites: Design and Applications” has been introduced. This reprint gathers and reviews the collection of twelve article contributions, with authors from Europe, Asia and America accepted for publication in the aforementioned Special Issue of Applied Sciences.


Book
Progress of Fiber-Reinforced Composites : Design and Applications
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fiber-reinforced composite (FRC) materials are widely used in advanced structures and are often applied in order to replace traditional materials such as metal components, especially those used in corrosive environments. They have become essential materials for maintaining and strengthening existing infrastructure due to the fact that they combine low weight and density with high strength, corrosion resistance, and high durability, providing many benefits in performance and durability. Modified fiber-based composites exhibit better mechanical properties, impact resistance, wear resistance, and fire resistance. Therefore, the FRC materials have reached a significant level of applications ranging from aerospace, aviation, and automotive systems to industrial, civil engineering, military, biomedical, marine facilities, and renewable energy. In order to update the field of design and development of composites with the use of organic or inorganic fibers, a Special Issue entitled “Progress of Fiber-Reinforced Composites: Design and Applications” has been introduced. This reprint gathers and reviews the collection of twelve article contributions, with authors from Europe, Asia and America accepted for publication in the aforementioned Special Issue of Applied Sciences.

Keywords

Technology: general issues --- fiber-cement-treated subgrade soil --- mechanical properties --- triaxial test --- brittleness index --- failure angle --- carbon fibers --- lignin --- melt spinning --- carbonization --- Raman --- micro-CT --- banana fiber --- impact response --- compression after impact --- natural fiber --- compression shear properties --- bonded-bolted hybrid --- C/C composites --- high temperature --- hybrid structures --- metallic/composite joints --- plasticity --- damage propagation --- FEM --- crashworthiness --- finite element analysis (FEA) --- composites --- progressive failure analysis (PFA) --- cyclic hygrothermal aging --- high strain rates --- braided composites --- compressive property --- basalt fiber-reinforced polymer (BFRP) --- thickness --- durability --- hygrothermal ageing --- accelerated ageing method --- GFRP composite structures --- slip-critical connection --- stainless-steel cover plates --- surface treatment --- prevailing torque --- anchor --- shear behavior --- concrete edge breakout resistance --- ultimate flexural strength --- energy absorption capacity --- steel fiber --- multi-material design --- thermoplastic composites --- joining --- resistance spot welding --- metal inserts --- tubular composites --- finite element analysis --- computational fluid dynamics --- wireless communication --- signal attenuation --- fiber-cement-treated subgrade soil --- mechanical properties --- triaxial test --- brittleness index --- failure angle --- carbon fibers --- lignin --- melt spinning --- carbonization --- Raman --- micro-CT --- banana fiber --- impact response --- compression after impact --- natural fiber --- compression shear properties --- bonded-bolted hybrid --- C/C composites --- high temperature --- hybrid structures --- metallic/composite joints --- plasticity --- damage propagation --- FEM --- crashworthiness --- finite element analysis (FEA) --- composites --- progressive failure analysis (PFA) --- cyclic hygrothermal aging --- high strain rates --- braided composites --- compressive property --- basalt fiber-reinforced polymer (BFRP) --- thickness --- durability --- hygrothermal ageing --- accelerated ageing method --- GFRP composite structures --- slip-critical connection --- stainless-steel cover plates --- surface treatment --- prevailing torque --- anchor --- shear behavior --- concrete edge breakout resistance --- ultimate flexural strength --- energy absorption capacity --- steel fiber --- multi-material design --- thermoplastic composites --- joining --- resistance spot welding --- metal inserts --- tubular composites --- finite element analysis --- computational fluid dynamics --- wireless communication --- signal attenuation


Book
Sustainability in Geotechnics: The Use of Environmentally Friendly Materials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Implementing environmentally friendly and cost-effective solutions is a pressing need to fulfill the United Nations Sustainable Development Goals (SDGs) set to be achieved by 2030. Thus, the requirement to execute the design, construction and maintenance of civil engineering structures and infrastructures as sustainably as possible are big challenges currently faced by civil and geotechnical engineers. This book, compiling the papers published during the 2020–2021 biennium in the Topical Collection, “Sustainability in Geotechnics: The Use of Environmentally Friendly Materials”, is intended help tackle those challenges. Several topics are covered by the 23 papers published herein, including: sustainable ground improvement techniques; replacement of raw materials such as soils and aggregates by recycled materials; soil reinforcement with alternative materials; sustainable solutions using geosynthetics; low-carbon solutions for stabilization of contaminated soils; and bioengineering techniques to prevent soil erosion. The Guest Editor expects that this book can be very useful towards the achievement of more environmentally friendly solutions, in particular in the field of geotechnical engineering.

Keywords

Technology: general issues --- History of engineering & technology --- low carbon materials --- heavy metal immobilization --- sustainable remediation --- environmentally friendly materials --- sustainability in geotechnics --- recycled construction and demolition materials --- geogrids --- pullout behaviour --- pullout test parameters --- cement --- lime --- copper slag --- strength --- durability --- microstructure --- eCO2 --- embodied energy --- soda residue --- fly ash --- field test --- laboratory test --- mechanical property --- gypsum --- liners --- pavements --- PROMETHEE --- heavy metals --- soil --- enzyme solutions --- desorption --- extractant --- bioengineering techniques --- vegetative cover index --- slope’s superficial erosion --- phytosanitary aspects --- climatological conditions --- geosynthetics --- geotextile tubes --- sludge --- dewatering --- total solids --- polymer dosing --- response surface --- geomembrane --- HDPE --- thermal analysis --- sewage --- leachate --- incinerator bottom ash --- geotextiles --- mechanical damage --- sustainable engineering --- waste valorization --- soil improvement --- polypropylene strips --- geotechnical properties --- sustainable reuse of plastic waste --- recycled pet strips --- lateritic soil --- composite --- uniaxial tests --- shear strength --- small-strain stiffness --- ground improvement --- ground remediation --- local strain --- triaxial test --- geopolymer --- soil stabilization --- expansive soils --- sustainability benefits --- sustainable ground improvement --- oil-contaminated soils --- geotextile–polynorbornene liner --- pollutant adsorption --- diffusion --- permeability alteration --- microbial induced carbonate precipitation --- life cycle assessment --- energy consumption --- carbon emissions --- fine-grained soil --- tire-derived aggregate --- optimum moisture content --- maximum dry unit weight --- Bland–Altman analysis --- geogrid --- recycled materials --- interface shear strength --- large-direct shear test --- base course reinforcement --- pavement geotechnics --- recycled aluminum salt slag --- resilient modulus --- leachate analysis --- soil–cement --- recycled waste --- fatigue life --- subgrade --- compressive strength --- geogrid-reinforced soil structure --- substitute building material --- recycled material --- green infrastructure --- polypropylene fibers --- drained test --- stress–dilatancy --- wastes --- tires --- CDW --- PET bottles --- sustainability in geotechnical engineering --- sustainable ground remediation --- geopolymers


Book
Sustainability in Geotechnics: The Use of Environmentally Friendly Materials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Implementing environmentally friendly and cost-effective solutions is a pressing need to fulfill the United Nations Sustainable Development Goals (SDGs) set to be achieved by 2030. Thus, the requirement to execute the design, construction and maintenance of civil engineering structures and infrastructures as sustainably as possible are big challenges currently faced by civil and geotechnical engineers. This book, compiling the papers published during the 2020–2021 biennium in the Topical Collection, “Sustainability in Geotechnics: The Use of Environmentally Friendly Materials”, is intended help tackle those challenges. Several topics are covered by the 23 papers published herein, including: sustainable ground improvement techniques; replacement of raw materials such as soils and aggregates by recycled materials; soil reinforcement with alternative materials; sustainable solutions using geosynthetics; low-carbon solutions for stabilization of contaminated soils; and bioengineering techniques to prevent soil erosion. The Guest Editor expects that this book can be very useful towards the achievement of more environmentally friendly solutions, in particular in the field of geotechnical engineering.

Keywords

low carbon materials --- heavy metal immobilization --- sustainable remediation --- environmentally friendly materials --- sustainability in geotechnics --- recycled construction and demolition materials --- geogrids --- pullout behaviour --- pullout test parameters --- cement --- lime --- copper slag --- strength --- durability --- microstructure --- eCO2 --- embodied energy --- soda residue --- fly ash --- field test --- laboratory test --- mechanical property --- gypsum --- liners --- pavements --- PROMETHEE --- heavy metals --- soil --- enzyme solutions --- desorption --- extractant --- bioengineering techniques --- vegetative cover index --- slope’s superficial erosion --- phytosanitary aspects --- climatological conditions --- geosynthetics --- geotextile tubes --- sludge --- dewatering --- total solids --- polymer dosing --- response surface --- geomembrane --- HDPE --- thermal analysis --- sewage --- leachate --- incinerator bottom ash --- geotextiles --- mechanical damage --- sustainable engineering --- waste valorization --- soil improvement --- polypropylene strips --- geotechnical properties --- sustainable reuse of plastic waste --- recycled pet strips --- lateritic soil --- composite --- uniaxial tests --- shear strength --- small-strain stiffness --- ground improvement --- ground remediation --- local strain --- triaxial test --- geopolymer --- soil stabilization --- expansive soils --- sustainability benefits --- sustainable ground improvement --- oil-contaminated soils --- geotextile–polynorbornene liner --- pollutant adsorption --- diffusion --- permeability alteration --- microbial induced carbonate precipitation --- life cycle assessment --- energy consumption --- carbon emissions --- fine-grained soil --- tire-derived aggregate --- optimum moisture content --- maximum dry unit weight --- Bland–Altman analysis --- geogrid --- recycled materials --- interface shear strength --- large-direct shear test --- base course reinforcement --- pavement geotechnics --- recycled aluminum salt slag --- resilient modulus --- leachate analysis --- soil–cement --- recycled waste --- fatigue life --- subgrade --- compressive strength --- geogrid-reinforced soil structure --- substitute building material --- recycled material --- green infrastructure --- polypropylene fibers --- drained test --- stress–dilatancy --- wastes --- tires --- CDW --- PET bottles --- sustainability in geotechnical engineering --- sustainable ground remediation --- geopolymers


Book
Sustainability in Geotechnics: The Use of Environmentally Friendly Materials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Implementing environmentally friendly and cost-effective solutions is a pressing need to fulfill the United Nations Sustainable Development Goals (SDGs) set to be achieved by 2030. Thus, the requirement to execute the design, construction and maintenance of civil engineering structures and infrastructures as sustainably as possible are big challenges currently faced by civil and geotechnical engineers. This book, compiling the papers published during the 2020–2021 biennium in the Topical Collection, “Sustainability in Geotechnics: The Use of Environmentally Friendly Materials”, is intended help tackle those challenges. Several topics are covered by the 23 papers published herein, including: sustainable ground improvement techniques; replacement of raw materials such as soils and aggregates by recycled materials; soil reinforcement with alternative materials; sustainable solutions using geosynthetics; low-carbon solutions for stabilization of contaminated soils; and bioengineering techniques to prevent soil erosion. The Guest Editor expects that this book can be very useful towards the achievement of more environmentally friendly solutions, in particular in the field of geotechnical engineering.

Keywords

Technology: general issues --- History of engineering & technology --- low carbon materials --- heavy metal immobilization --- sustainable remediation --- environmentally friendly materials --- sustainability in geotechnics --- recycled construction and demolition materials --- geogrids --- pullout behaviour --- pullout test parameters --- cement --- lime --- copper slag --- strength --- durability --- microstructure --- eCO2 --- embodied energy --- soda residue --- fly ash --- field test --- laboratory test --- mechanical property --- gypsum --- liners --- pavements --- PROMETHEE --- heavy metals --- soil --- enzyme solutions --- desorption --- extractant --- bioengineering techniques --- vegetative cover index --- slope’s superficial erosion --- phytosanitary aspects --- climatological conditions --- geosynthetics --- geotextile tubes --- sludge --- dewatering --- total solids --- polymer dosing --- response surface --- geomembrane --- HDPE --- thermal analysis --- sewage --- leachate --- incinerator bottom ash --- geotextiles --- mechanical damage --- sustainable engineering --- waste valorization --- soil improvement --- polypropylene strips --- geotechnical properties --- sustainable reuse of plastic waste --- recycled pet strips --- lateritic soil --- composite --- uniaxial tests --- shear strength --- small-strain stiffness --- ground improvement --- ground remediation --- local strain --- triaxial test --- geopolymer --- soil stabilization --- expansive soils --- sustainability benefits --- sustainable ground improvement --- oil-contaminated soils --- geotextile–polynorbornene liner --- pollutant adsorption --- diffusion --- permeability alteration --- microbial induced carbonate precipitation --- life cycle assessment --- energy consumption --- carbon emissions --- fine-grained soil --- tire-derived aggregate --- optimum moisture content --- maximum dry unit weight --- Bland–Altman analysis --- geogrid --- recycled materials --- interface shear strength --- large-direct shear test --- base course reinforcement --- pavement geotechnics --- recycled aluminum salt slag --- resilient modulus --- leachate analysis --- soil–cement --- recycled waste --- fatigue life --- subgrade --- compressive strength --- geogrid-reinforced soil structure --- substitute building material --- recycled material --- green infrastructure --- polypropylene fibers --- drained test --- stress–dilatancy --- wastes --- tires --- CDW --- PET bottles --- sustainability in geotechnical engineering --- sustainable ground remediation --- geopolymers --- low carbon materials --- heavy metal immobilization --- sustainable remediation --- environmentally friendly materials --- sustainability in geotechnics --- recycled construction and demolition materials --- geogrids --- pullout behaviour --- pullout test parameters --- cement --- lime --- copper slag --- strength --- durability --- microstructure --- eCO2 --- embodied energy --- soda residue --- fly ash --- field test --- laboratory test --- mechanical property --- gypsum --- liners --- pavements --- PROMETHEE --- heavy metals --- soil --- enzyme solutions --- desorption --- extractant --- bioengineering techniques --- vegetative cover index --- slope’s superficial erosion --- phytosanitary aspects --- climatological conditions --- geosynthetics --- geotextile tubes --- sludge --- dewatering --- total solids --- polymer dosing --- response surface --- geomembrane --- HDPE --- thermal analysis --- sewage --- leachate --- incinerator bottom ash --- geotextiles --- mechanical damage --- sustainable engineering --- waste valorization --- soil improvement --- polypropylene strips --- geotechnical properties --- sustainable reuse of plastic waste --- recycled pet strips --- lateritic soil --- composite --- uniaxial tests --- shear strength --- small-strain stiffness --- ground improvement --- ground remediation --- local strain --- triaxial test --- geopolymer --- soil stabilization --- expansive soils --- sustainability benefits --- sustainable ground improvement --- oil-contaminated soils --- geotextile–polynorbornene liner --- pollutant adsorption --- diffusion --- permeability alteration --- microbial induced carbonate precipitation --- life cycle assessment --- energy consumption --- carbon emissions --- fine-grained soil --- tire-derived aggregate --- optimum moisture content --- maximum dry unit weight --- Bland–Altman analysis --- geogrid --- recycled materials --- interface shear strength --- large-direct shear test --- base course reinforcement --- pavement geotechnics --- recycled aluminum salt slag --- resilient modulus --- leachate analysis --- soil–cement --- recycled waste --- fatigue life --- subgrade --- compressive strength --- geogrid-reinforced soil structure --- substitute building material --- recycled material --- green infrastructure --- polypropylene fibers --- drained test --- stress–dilatancy --- wastes --- tires --- CDW --- PET bottles --- sustainability in geotechnical engineering --- sustainable ground remediation --- geopolymers


Book
Corrosion and Degradation of Materials
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Studies on the corrosion and degradation of materials play a decisive role in the novel design and development of corrosion-resistant materials, the selection of materials used in harsh environments in designed lifespans, the invention of corrosion control methods and procedures (e.g., coatings, inhibitors), and the safety assessment and prediction of materials (i.e., modelling). These studies cover a wide range of research fields, including the calculation of thermodynamics, the characterization of microstructures, the investigation of mechanical and corrosion properties, the creation of corrosion coatings or inhibitors, and the establishment of corrosion modelling. This Special Issue is devoted to these types of studies, which facilitate the understanding of the corrosion fundamentals of materials in service, the development of corrosion coatings or methods, improving their durability, and eventually decreasing corrosion loss.

Keywords

Technology: general issues --- Chemical engineering --- AC-HVAF --- FeB --- HEAs --- coating --- corrosion --- liquid zinc --- cuprous oxide nanochains --- thermal decomposition --- nanofluids --- photo-thermal conversion performance --- molecular dynamics --- binding energy --- crystallization prevention --- flocking for resisting blockage --- drainage pipe --- mechanochemical activation --- coal-gasification slag --- particle characteristics --- cementitious material --- reactivity --- traffic engineering --- damage identification --- deflection influence line --- continuous beam bridge --- multi-span bridges --- structural damage --- anti-blocking of flocking drainage pipe --- drainage pipe blockage by crystals --- mechanism --- mathematical modeling --- tunnel --- soft rock --- strain hardening/softening --- bearing capacity of footing --- numerical solution --- effect of intermediate principal stress --- CoCrFeNiSiMoW --- medium-entropy alloy coatings --- microstructure --- wear --- salt freezing --- erosion --- freeze thaw cycle --- concrete --- durability --- numerical simulation --- high-nitrogen austenitic stainless steel --- friction coefficient --- high temperature --- loess calcareous nodules --- heavy-metal ions --- single adsorption --- adsorption rate --- grey quality gain-loss --- engineering specifications --- process capability --- crystallization and clogging in pipe --- flow velocity --- pipe diameter --- pipe material --- friction stir welding --- aluminum and steel dissimilar metals butt --- high rotational speed --- ultra-high rotational speed --- intermetallic compound --- magnesium alloy --- composite coating --- structural characterization --- mechanical properties --- bioactivity --- antibacterial activity --- biocompatibility --- Feixianguan Formation --- underdetermined system --- curve reconstruction --- circulating neural network --- old well review --- weathered sand --- freeze–thaw cycles --- damage law --- microscopic characteristics --- deterioration mechanism --- flange shaft --- fatigue failure --- fracture mechanics --- stress intensity factor --- crack propagation --- bridge structure --- mode --- frequency --- displacement curve --- Z3CN20.09M --- corrosion fatigue --- fatigue life --- high temperature water --- SnO2-Sb2Ox --- sol-enhanced electrodeposition --- organic degradation --- micro-arc oxidation (MAO) --- SiO2 nanoparticles --- corrosion resistance --- wear property --- magnesium–lithium alloy --- localized corrosion --- corrosion product film --- annular channel angular extrusion --- predeformation --- 2A12 aluminum alloy --- heat treatment --- uniform mechanical properties --- Q345 steel --- hot-dipping aluminum-silicon --- annealing --- FeAl phase --- Al2O3 --- dissimilar metal cladding --- pressure vessel pipe–nozzle --- micro-hardness --- sweet cherry --- edible coating --- quality --- antioxidant enzymatic activities --- stainless steel --- titanium --- crevice corrosion --- multiphysics --- ring narrow groove --- mask electrochemical machining --- numerical simulation of the multiple physical fields --- diffusion barrier --- Cu interconnect --- self-formed --- Cu(Re) alloy --- subgrade engineering --- coarse-grained soil --- step cyclic loading --- dynamic triaxial test --- hysteresis curve --- n/a --- freeze-thaw cycles --- magnesium-lithium alloy --- pressure vessel pipe-nozzle


Book
Corrosion and Degradation of Materials
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Studies on the corrosion and degradation of materials play a decisive role in the novel design and development of corrosion-resistant materials, the selection of materials used in harsh environments in designed lifespans, the invention of corrosion control methods and procedures (e.g., coatings, inhibitors), and the safety assessment and prediction of materials (i.e., modelling). These studies cover a wide range of research fields, including the calculation of thermodynamics, the characterization of microstructures, the investigation of mechanical and corrosion properties, the creation of corrosion coatings or inhibitors, and the establishment of corrosion modelling. This Special Issue is devoted to these types of studies, which facilitate the understanding of the corrosion fundamentals of materials in service, the development of corrosion coatings or methods, improving their durability, and eventually decreasing corrosion loss.

Keywords

AC-HVAF --- FeB --- HEAs --- coating --- corrosion --- liquid zinc --- cuprous oxide nanochains --- thermal decomposition --- nanofluids --- photo-thermal conversion performance --- molecular dynamics --- binding energy --- crystallization prevention --- flocking for resisting blockage --- drainage pipe --- mechanochemical activation --- coal-gasification slag --- particle characteristics --- cementitious material --- reactivity --- traffic engineering --- damage identification --- deflection influence line --- continuous beam bridge --- multi-span bridges --- structural damage --- anti-blocking of flocking drainage pipe --- drainage pipe blockage by crystals --- mechanism --- mathematical modeling --- tunnel --- soft rock --- strain hardening/softening --- bearing capacity of footing --- numerical solution --- effect of intermediate principal stress --- CoCrFeNiSiMoW --- medium-entropy alloy coatings --- microstructure --- wear --- salt freezing --- erosion --- freeze thaw cycle --- concrete --- durability --- numerical simulation --- high-nitrogen austenitic stainless steel --- friction coefficient --- high temperature --- loess calcareous nodules --- heavy-metal ions --- single adsorption --- adsorption rate --- grey quality gain-loss --- engineering specifications --- process capability --- crystallization and clogging in pipe --- flow velocity --- pipe diameter --- pipe material --- friction stir welding --- aluminum and steel dissimilar metals butt --- high rotational speed --- ultra-high rotational speed --- intermetallic compound --- magnesium alloy --- composite coating --- structural characterization --- mechanical properties --- bioactivity --- antibacterial activity --- biocompatibility --- Feixianguan Formation --- underdetermined system --- curve reconstruction --- circulating neural network --- old well review --- weathered sand --- freeze–thaw cycles --- damage law --- microscopic characteristics --- deterioration mechanism --- flange shaft --- fatigue failure --- fracture mechanics --- stress intensity factor --- crack propagation --- bridge structure --- mode --- frequency --- displacement curve --- Z3CN20.09M --- corrosion fatigue --- fatigue life --- high temperature water --- SnO2-Sb2Ox --- sol-enhanced electrodeposition --- organic degradation --- micro-arc oxidation (MAO) --- SiO2 nanoparticles --- corrosion resistance --- wear property --- magnesium–lithium alloy --- localized corrosion --- corrosion product film --- annular channel angular extrusion --- predeformation --- 2A12 aluminum alloy --- heat treatment --- uniform mechanical properties --- Q345 steel --- hot-dipping aluminum-silicon --- annealing --- FeAl phase --- Al2O3 --- dissimilar metal cladding --- pressure vessel pipe–nozzle --- micro-hardness --- sweet cherry --- edible coating --- quality --- antioxidant enzymatic activities --- stainless steel --- titanium --- crevice corrosion --- multiphysics --- ring narrow groove --- mask electrochemical machining --- numerical simulation of the multiple physical fields --- diffusion barrier --- Cu interconnect --- self-formed --- Cu(Re) alloy --- subgrade engineering --- coarse-grained soil --- step cyclic loading --- dynamic triaxial test --- hysteresis curve --- n/a --- freeze-thaw cycles --- magnesium-lithium alloy --- pressure vessel pipe-nozzle

Listing 1 - 10 of 11 << page
of 2
>>
Sort by