Listing 1 - 10 of 179 | << page >> |
Sort by
|
Choose an application
This book proposes a thorough introduction for a varied audience. The reader will master London theory and the Pippard equations, and go on to understand type I and type II superconductors (their thermodynamics, magnetic properties, vortex dynamics, current transport…), Cooper pairs and the results of BCS theory. By studying coherence and flux quantization he or she will be lead to the Josephson effect which, with the SQUID, is a good example of the applications. The reader can make up for any gaps in his knowledge with the use of the appendices, follow the logic behind each model, and assimilate completely the underlying concepts. Approximately 250 illustrations help in developing a thorough understanding. This volume is aimed towards masters and doctoral students, as well as advanced undergraduates, teachers and researchers at all levels coming from a broad range of subjects (chemistry, physics, mechanical and electrical engineering, materials science…). Engineers working in industry will have a useful introduction to other more applied or specialized material. Philippe Mangin is emeritus professor of physics at Mines Nancy Graduate School of Science, Engineering and Management of the University of Lorraine, and researcher at the Jean Lamour Institute in France. He is the former director of both the French neutron scattering facility, Léon Brillouin Laboratory in Orsay, and the Material Physics Laboratory in Nancy, and has taught superconductivity to a broad audience, in particular to engineering students. Rémi Kahn is a retired senior research scientist of the French Alternative Energies and Atomic Energy Commission (CEA-Saclay). He worked at the Léon Brillouin Laboratory and was in charge of the experimental areas of INB 101 (the Orphée research reactor). This work responded to the need to bring an accessible account suitable for a wide spectrum of scientists and engineers.
Choose an application
This book proposes a thorough introduction for a varied audience. The reader will master London theory and the Pippard equations, and go on to understand type I and type II superconductors (their thermodynamics, magnetic properties, vortex dynamics, current transport…), Cooper pairs and the results of BCS theory. By studying coherence and flux quantization he or she will be lead to the Josephson effect which, with the SQUID, is a good example of the applications. The reader can make up for any gaps in his knowledge with the use of the appendices, follow the logic behind each model, and assimilate completely the underlying concepts. Approximately 250 illustrations help in developing a thorough understanding. This volume is aimed towards masters and doctoral students, as well as advanced undergraduates, teachers and researchers at all levels coming from a broad range of subjects (chemistry, physics, mechanical and electrical engineering, materials science…). Engineers working in industry will have a useful introduction to other more applied or specialized material. Philippe Mangin is emeritus professor of physics at Mines Nancy Graduate School of Science, Engineering and Management of the University of Lorraine, and researcher at the Jean Lamour Institute in France. He is the former director of both the French neutron scattering facility, Léon Brillouin Laboratory in Orsay, and the Material Physics Laboratory in Nancy, and has taught superconductivity to a broad audience, in particular to engineering students. Rémi Kahn is a retired senior research scientist of the French Alternative Energies and Atomic Energy Commission (CEA-Saclay). He worked at the Léon Brillouin Laboratory and was in charge of the experimental areas of INB 101 (the Orphée research reactor). This work responded to the need to bring an accessible account suitable for a wide spectrum of scientists and engineers.
Choose an application
This book comprehensively presents an unconventional quantum criticality caused by valence fluctuations, which offers theoretical understanding of unconventional Fermi-liquid properties in cerium- and ytterbium-based heavy fermion metals including CeCu2(Si,Ge)2 and CeRhIn5 under pressure, and quasicrystal β-YbAlB4 and Yb15Al34Au51. The book begins with an introduction to fundamental concepts for heavy fermion systems, valence fluctuation, and quantum phase transition, including self-consistent renormalization group theory. A subsequent chapter is devoted to a comprehensive description of the theory of the unconventional quantum criticality based on a valence transition, featuring explicit temperature dependence of various physical quantities, which allows for comparisons to relevant experiments. Lastly, it discusses how ubiquitous the valence fluctuation is, presenting candidate materials not only in heavy fermions, but also in strongly correlated electrons represented by high-Tc superconductor cuprates. Introductory chapters provide useful materials for learning fundamentals of heavy fermion systems and their theory. Further, experimental topics relevant to valence fluctuations are valuable resources for those who are new to the field to easily catch up with experimental background and facts.
Choose an application
This book focuses on nanoscale electronic phase separation in a wide class of different materials, especially in strongly correlated electron systems. It features an extensive review of the field of inhomogeneous spin and charge states in condensed matter physics while delivering a topical and timely discussion of a wide range of recent advances in electronic phase separation. It describes the formation of different types of nanoscale ferromagnetic metallic droplets in antiferromagnetically ordered, charge-ordered, or orbitally-ordered insulating matrices, as well as the colossal magnetoresistance effect and tunneling electron transport in the nonmetallic phase-separated state of complex magnetic oxides. It also discusses compounds with spin-state transitions, inhomogeneously phase-separated states in strongly correlated multiband systems, and the electron polaron effect, paying special attention to systems with imperfect Fermi surface-nesting such as chromium alloys, iron-based pnictides, and AA-stacked graphene bilayers. The authors investigate also the formation of order parameter clusters and insulator-superconductor transition in different superconducting systems including bismuth oxides, two-dimensional films in the presence of strong disorder, as well as inhomogeneous Fermi-Bose mixtures in Aharonov-Bohm rings with a superconducting bridge in a topologically nontrivial state. This book is a valuable resource for researchers involved in theoretical and experimental studies of strongly correlated materials, such as magnetic semiconductors, Fermi-Bose mixtures, and twisted bilayer graphene.
Condensed matter. --- Magnetism. --- Low temperatures. --- Topological insulators. --- Strongly Correlated Systems. --- Low Temperature Physics. --- Two-dimensional Materials. --- Topological Material.
Choose an application
This book proposes a thorough introduction for a varied audience. The reader will master London theory and the Pippard equations, and go on to understand type I and type II superconductors (their thermodynamics, magnetic properties, vortex dynamics, current transport…), Cooper pairs and the results of BCS theory. By studying coherence and flux quantization he or she will be lead to the Josephson effect which, with the SQUID, is a good example of the applications. The reader can make up for any gaps in his knowledge with the use of the appendices, follow the logic behind each model, and assimilate completely the underlying concepts. Approximately 250 illustrations help in developing a thorough understanding. This volume is aimed towards masters and doctoral students, as well as advanced undergraduates, teachers and researchers at all levels coming from a broad range of subjects (chemistry, physics, mechanical and electrical engineering, materials science…). Engineers working in industry will have a useful introduction to other more applied or specialized material. Philippe Mangin is emeritus professor of physics at Mines Nancy Graduate School of Science, Engineering and Management of the University of Lorraine, and researcher at the Jean Lamour Institute in France. He is the former director of both the French neutron scattering facility, Léon Brillouin Laboratory in Orsay, and the Material Physics Laboratory in Nancy, and has taught superconductivity to a broad audience, in particular to engineering students. Rémi Kahn is a retired senior research scientist of the French Alternative Energies and Atomic Energy Commission (CEA-Saclay). He worked at the Léon Brillouin Laboratory and was in charge of the experimental areas of INB 101 (the Orphée research reactor). This work responded to the need to bring an accessible account suitable for a wide spectrum of scientists and engineers.
Choose an application
This book provides an insight into spin-triplet superconductivity, which rapidly becomes better understood in recent years, from the perspective of a microscopic measurement technique called nuclear magnetic resonance (NMR). The compound UTe2, the target material of this book, was confirmed to show superconductivity in 2018, and its peculiarity is very similar to that of other uranium-based ferromagnetic superconductors, ensuring spin triplet superconductivity. This book begins with the fundamentals of superconductivity and subsequently overviews research in spin-triplet superconductivity. The similarity between the high-field superconducting phase in UTe2 and the superconducting phase under pressure is particularly interesting among the various superconducting phenomena observed so far. This book provides a concise introduction to superconductivity, so that the book is also intended for wide readership including the beginners interested in the phenomenon of superconductivity and undergraduate and graduate students. It also cover the NMR measurement from the basic derivation, which is accessible for beginners. The target material UTe2 is skillfully described, including a selection of related works to this book.
Superconductivity. --- Superconductors. --- Nuclear magnetic resonance. --- Condensed matter. --- Materials --- Magnetic Resonance (NMR, EPR). --- Strongly Correlated Systems. --- Characterization and Analytical Technique. --- Analysis.
Choose an application
This book presents the lecture notes and exercises corresponding to the course "Quantum Field Theoretical Methods in Condensed Matter" that the authors imparted for several years as part of the masters program on Condensed Matter and Biological Systems at the Autonoma University of Madrid. It provides a step-by-step description of the material which will benefit not only professors wishing to undertake a similar task, but also interested students. Additionally, the book provides a complete set of exercises on the various topics along with hints about how to solve them, a feature frequently absent in textbooks on many-body techniques. As well as addressing the traditional topics in the field (diagrammatic techniques, screening in metals, Fermi liquid theory, electron-phonon interactions, etc.) the text also covers less conventional topics such as the application of non-equilibrium Green function techniques to quantum transport in normal and superconducting nanoscale devices.
Choose an application
Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.
Superconductors. --- Superconducting materials --- Superconductive devices --- Cryoelectronics --- Electronics --- Solid state electronics --- Materials --- Optical materials. --- Strongly Correlated Systems, Superconductivity. --- Optical and Electronic Materials. --- Optics --- Superconductivity. --- Electronic materials. --- Electronic materials --- Electric conductivity --- Critical currents --- Superfluidity
Choose an application
This thesis sheds important new light on the puzzling properties of Strontium Ruthenate. Using a sophisticated weak-coupling approach, exact within certain limits, it shows that proper treatment of spin-orbit and multi-band effects is crucial to the physics. Based on the results of these calculations, it resolves a crucial, long-standing puzzle in the field: It demonstrates why the experimentally observed time-reversal breaking is not incompatible with the observed lack of measurable edge currents. Lastly, the thesis makes predictions for the properties of the material under uniaxial strain, which are in good agreement with recent experiments —resolving the mystery of the so-called 3K phase, and suggesting the intriguing possibility that under strain the superconductor may become conventional.
Physics. --- Superconductivity. --- Superconductors. --- Strongly Correlated Systems, Superconductivity. --- Theoretical, Mathematical and Computational Physics. --- Electric conductivity --- Critical currents --- Superfluidity --- Mathematical physics. --- Physical mathematics --- Physics --- Superconducting materials --- Superconductive devices --- Cryoelectronics --- Electronics --- Solid state electronics --- Mathematics --- Materials
Choose an application
This new edition of the popular introduction to solid-state physics provides a comprehensive overview on basic theoretical and experimental concepts of material science. Additional sections emphasize current topics in solid-state physics.Notably, sections on important devices, aspects of non-periodic structures of matter, phase transitions, defects, superconductors and nanostructures have been added, the chapters presenting semi- and superconductivity had been completly updated.Students will benefit significantly from solving the exercises given at the end of each chapter. This book is intended for university students in physics, engineering and electrical engineering. This edition has been carefully revised, updated, and enlarged. Among the key recent developments incorporated throughout GMR (giant magneto resistance), thin-film magnetic properties, magnetic hysteresis and domain walls, quantum transport, metamaterials, and preparation techniques for nanostructures.
Listing 1 - 10 of 179 | << page >> |
Sort by
|