Listing 1 - 10 of 28 | << page >> |
Sort by
|
Choose an application
Stretchable electronics is one of the transformative pillars of future flexible electronics. As a result, the research on new passive and active materials, novel designs, and engineering approaches has attracted significant interest. Recent studies have highlighted the importance of new approaches that enable the integration of high-performance materials, including, organic and inorganic compounds, carbon-based and layered materials, and composites to serve as conductors, semiconductors or insulators, with the ability to accommodate electronics on stretchable substrates. This Element presents a discussion about the strategies that have been developed for obtaining stretchable systems, with a focus on various stretchable geometries to achieve strain invariant electrical response, and summarises the recent advances in terms of material research, various integration techniques of high-performance electronics. In addition, some of the applications, challenges and opportunities associated with the development of stretchable electronics are discussed.
Choose an application
In the future, wearable technology will revolutionize the way we live. The current trend is to augment ordinary wearable objects – e.g. watches, glasses, bracelets, and clothing – with advanced information and communication technologies such as sensors, electronics, software, connectivity, and power sources. These wearable devices can monitor and assist the user in the management of his/her daily life with applications that range from activity tracking, sport and wellness, mobile games, and environmental monitoring, up to e-health. This book explores recent advances in the multidisciplinary field of wearable technologies and the important remaining gaps that must be addressed in order to obtain a massive diffusion. Articles in this book address topics that include wearable sensing and bio-sensing technologies, smart textiles, smart materials, wearable microsystems, low-power and embedded circuits for data acquisition, and processing and data transmission.
e-health --- flexible/stretchable electronics --- augmented reality --- smart textiles --- Wearable sensors
Choose an application
Flexible and stretchable electronics are receiving tremendous attention as future electronics due to their flexibility and light weight, especially as applications in wearable electronics. Flexible electronics are usually fabricated on heat sensitive flexible substrates such as plastic, fabric or even paper, while stretchable electronics are usually fabricated from an elastomeric substrate to survive large deformation in their practical application. Therefore, successful fabrication of flexible electronics needs low temperature processable novel materials and a particular processing development because traditional materials and processes are not compatible with flexible/stretchable electronics. Huge technical challenges and opportunities surround these dramatic changes from the perspective of new material design and processing, new fabrication techniques, large deformation mechanics, new application development and so on. Here, we invited talented researchers to join us in this new vital field that holds the potential to reshape our future life, by contributing their words of wisdom from their particular perspective.
Low temperature process --- R2R printing --- Stretchable electronics --- Wearable electronics --- Flexible electronics --- Nanoparticles --- Skin Intelligence --- Soft Smartness --- Polymer substrate --- Soft Material and Processing --- Bio-inspired Microsystems --- Printed electronics --- Inkjet printing --- Fabrication Technique for Soft Device --- Nanowires --- Large Deformation Mechanics
Choose an application
Flexible Electronics platforms are increasingly used in the fields of sensors, displays, and energy conversion with the ultimate goal of facilitating their ubiquitous integration in our daily lives. Some of the key advantages associated with flexible electronic platforms are: bendability, lightweight, elastic, conformally shaped, nonbreakable, roll-to-roll manufacturable, and large-area. To realize their full potential, however, it is necessary to develop new methods for the fabrication of multifunctional flexible electronics at a reduced cost and with an increased resistance to mechanical fatigue. Accordingly, this Special Issue seeks to showcase short communications, research papers, and review articles that focus on novel methodological development for the fabrication, and integration of flexible electronics in healthcare, environmental monitoring, displays and human-machine interactivity, robotics, communication and wireless networks, and energy conversion, management, and storage.
hydrophobic paper --- n/a --- conformal design --- stretchability --- stretchable circuits --- long-term plasticity --- tunnel encapsulation --- bio-integrated devices --- epidermal sensors --- artificial synapses --- droplet circuits --- stretchable electronics --- island-bridge --- bottom-up approaches --- liquid metal --- feedback control --- durability --- dry/wet conditions --- solution electronics --- nano-fabrication --- surface plasmon-polariton (SPP) --- electronic measurements --- Polyvinyl Alcohol --- wireless power --- quantum tunneling effect --- low-cost manufacture --- non-developable surface --- top-down approaches --- reliability --- microwave photonics --- tissue adhesives --- temperature sensor --- brain-like intelligence --- electron transport --- wearable stimulators --- variable optical attenuator (VOA) --- ionic conduction --- design metrics --- flexible electronics --- flexible organic electronics --- soft biological tissue --- neuromorphic computing --- wearable heater --- quantum computing --- epidermal electronics --- tunable adhesion --- paper electronics
Choose an application
Thin films are important in many of the technologies used every day, impacting major markets for energy, medicine, and coatings. Scientists and engineers have been producing thin films on a wide range of surfaces for many decades but now have begun to explore giving these films new and controlled structures at the nanometer scale. These efforts are part of the new horizons opened by the field of nanoscience and impart novel structures and properties to these thin films. This book covers some of the methods for making these nanostructured thin films and their applications in areas impacting on health and energy usage.
Technology: general issues --- electrospinning --- poly(ethylene oxide) --- nanofiber diameter --- molecular weight --- concentration --- plasmonics --- localized surface plasmon resonance (LSPR) --- biosensing --- thin film --- gold nanostructures --- lithography --- nanohole array --- nanofabrication --- diphosphate-diarsenate --- crystal structure --- electrical properties --- transport pathways simulation --- metal-organic framework --- fabrication --- patterning --- tri-sodium citrate --- ZnO rod arrays --- response surface methodology --- expanded graphite --- flexible --- polydimethylsiloxane --- stretchable --- thin films --- electrospinning --- poly(ethylene oxide) --- nanofiber diameter --- molecular weight --- concentration --- plasmonics --- localized surface plasmon resonance (LSPR) --- biosensing --- thin film --- gold nanostructures --- lithography --- nanohole array --- nanofabrication --- diphosphate-diarsenate --- crystal structure --- electrical properties --- transport pathways simulation --- metal-organic framework --- fabrication --- patterning --- tri-sodium citrate --- ZnO rod arrays --- response surface methodology --- expanded graphite --- flexible --- polydimethylsiloxane --- stretchable --- thin films
Choose an application
Thin films are important in many of the technologies used every day, impacting major markets for energy, medicine, and coatings. Scientists and engineers have been producing thin films on a wide range of surfaces for many decades but now have begun to explore giving these films new and controlled structures at the nanometer scale. These efforts are part of the new horizons opened by the field of nanoscience and impart novel structures and properties to these thin films. This book covers some of the methods for making these nanostructured thin films and their applications in areas impacting on health and energy usage.
Technology: general issues --- electrospinning --- poly(ethylene oxide) --- nanofiber diameter --- molecular weight --- concentration --- plasmonics --- localized surface plasmon resonance (LSPR) --- biosensing --- thin film --- gold nanostructures --- lithography --- nanohole array --- nanofabrication --- diphosphate-diarsenate --- crystal structure --- electrical properties --- transport pathways simulation --- metal–organic framework --- fabrication --- patterning --- tri-sodium citrate --- ZnO rod arrays --- response surface methodology --- expanded graphite --- flexible --- polydimethylsiloxane --- stretchable --- thin films --- n/a --- metal-organic framework
Choose an application
Thin films are important in many of the technologies used every day, impacting major markets for energy, medicine, and coatings. Scientists and engineers have been producing thin films on a wide range of surfaces for many decades but now have begun to explore giving these films new and controlled structures at the nanometer scale. These efforts are part of the new horizons opened by the field of nanoscience and impart novel structures and properties to these thin films. This book covers some of the methods for making these nanostructured thin films and their applications in areas impacting on health and energy usage.
electrospinning --- poly(ethylene oxide) --- nanofiber diameter --- molecular weight --- concentration --- plasmonics --- localized surface plasmon resonance (LSPR) --- biosensing --- thin film --- gold nanostructures --- lithography --- nanohole array --- nanofabrication --- diphosphate-diarsenate --- crystal structure --- electrical properties --- transport pathways simulation --- metal–organic framework --- fabrication --- patterning --- tri-sodium citrate --- ZnO rod arrays --- response surface methodology --- expanded graphite --- flexible --- polydimethylsiloxane --- stretchable --- thin films --- n/a --- metal-organic framework
Choose an application
This Special Issue presents selected papers from the 8th
stretchable electronic device --- Cu-Ni alloy --- n/a --- bioremediation --- flexible electronic device --- microfluidic device --- tactile sensor --- self-organization --- stretchability --- origami --- flexible device --- pH indicator --- additive manufacturing --- fatigue --- Nafion --- Game of Life --- MEMS --- micropatterns --- stretchable elastomer --- microcantilever --- wearable --- polydimethylsiloxane --- reaction-diffusion system --- capacitive force sensor --- slipping detection --- microfabrication --- alginate hydrogel --- microfluidics --- shape from silhouette --- artificial cochlea --- micro/nano technology --- ion concentration polarization --- thermoelectric generator --- ultraviolet treatment --- micro-stereolithography --- proximity sensor --- blink --- 3D shape reconstruction --- reductive sintering --- cellular automata --- crack configuration --- Young model --- transparent object --- femtosecond laser --- piezoelectric material --- Turing pattern model --- microtubes --- thermoelectric film --- luciferin–luciferase assay --- fluorescein isothiocyanate (FITC) --- printing --- triple-coaxial flow --- photopolymer --- metal conductive track --- ion depletion zone --- sensors --- microbes --- direct writing --- outer hair cell --- dye-sensitized photovoltaic cells --- microfiber spinning --- ATP --- 3D printing --- parasitic capacitance --- luciferin-luciferase assay
Choose an application
Graphene nanoplatelets (GNPs) have attracted considerable interest due to their exceptional mechanical, electrical, and thermal properties, among others. This book provides a deep review of some aspects related to the characterization of GNPs and their applications as nanoreinforcements for different types of matrices such as polymeric- or cement-based matrices. In this book, the reader will find how these nanoparticles could be used for several industrial applications such as energy production and storage or effective barrier coatings, providing a wide overview of future progress in this topic
concrete --- graphene oxide --- n/a --- water absorption --- photo-thermal conversion performance --- wear --- structural health monitoring --- epoxy composite --- melting --- graphene-polymer nanocomposites --- graphene --- multiblock copolyesters --- base oil --- freeze-thaw cycles --- composite --- nanocomposite --- stretchable electronics --- terahertz time-domain spectroscopy --- grease --- graphene nanoplatelet --- polyethylene glycol --- adsorption --- strain sensor --- flexible electronics --- reinforced bioplastics --- phase change materials --- graphene nanoplatelets --- graphene nanoflakes --- friction --- freezing --- Drude–Smith model for complex conductivity --- graphenene nanoplatelets --- MIL-101(Fe) --- titanium dioxide --- uranium --- graphene nanoplates --- thermal conductivity --- wearable electronics --- Drude-Smith model for complex conductivity
Choose an application
Three-dimensional printing, or additive manufacturing, is an emerging manufacturing process. Research and development are being performed worldwide to provide a better understanding of the science and technology of 3D printing to make high-quality parts in a cost-effective and time-efficient manner. This book includes contemporary, unique, and impactful research on 3D printing from leading organizations worldwide.
Technology: general issues --- metal additive manufacturing --- directed energy deposition --- alloy design --- elemental powder mixture --- advanced materials --- composition control --- porosity --- additive technology --- SLM --- computer tomography --- additive manufacture --- SLM Ti-6Al-4V --- variability --- anisotropy --- fatigue crack growth --- Ti-6Al-4V alloy --- laser powder bed fusion --- powder bed temperature --- microstructure evolution --- mechanical properties --- additive manufacturing --- pore --- pulsed emission --- X-ray imaging --- non-spherical --- hydride-dehydride (HDH) Ti-6Al-4V powder --- post-process heat treatment --- microstructure --- ductile fracture --- stress state --- Ti-6Al-4V --- 316L stainless steel --- soft materials --- smart materials --- stretchable devices --- FRP --- 3D printing --- defense --- FDM --- topology optimization --- neural network --- neural style transfer --- binder jetting --- sands --- vacuum thermoforming --- fiber reinforced composite --- n/a
Listing 1 - 10 of 28 | << page >> |
Sort by
|