Narrow your search
Listing 1 - 10 of 14 << page
of 2
>>
Sort by

Book
Einfluss der krummung von spanngliedern auf der spannweg
Authors: ---
Year: 1970 Publisher: Berlin : Deutscher Ausschuss für Stahlbeton,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Determination of stress in rock. A-state-of-the-art
Author:
Year: 1967 Publisher: Philadelphia, PA : ASTM (American Society for Testing & Materials),

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Costruzioni in cemento armato. : Studi e rendiconti
Author:
Year: 1967 Publisher: Milano : Politecnico di Milano,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Observations extensométriques sur des oeuvres en béton de grande épaisseur (barrage de Place Moulin)
Authors: ---
Year: 1974 Publisher: Bergamo : ISMES,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Contribution à l'utilisation de méthodes de l'optique cohérente dans l'analyse expérimentale des contraintes
Author:
Year: 1976 Publisher: Paris : Université Pierre et Marie Curie [Paris VI],

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Zusammenstellung und beurteilung von messverfahren zur ermittlung der beanspruchungen in stahlbetonbauteilen
Authors: ---
Year: 1982 Publisher: Berlin : Deutscher Ausschuss für Stahlbeton,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Modal testing : theory and practice
Author:
ISBN: 0863800173 086380036X 0471904724 Year: 1984 Volume: 2 Publisher: Taunton : New York : Research Studies Press J. Wiley,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Corrosion and Protection of Metals
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Introduction and Scope—During the last few decades, an enormous effort has been made to understand corrosion phenomena and their mechanisms, and to elucidate the causes that dramatically influence the service lifetime of metal materials. The performance of metal materials in aggressive environments is critical for a sustainable society. The failure of the material in service impacts the economy, the environment, health, and society. In this regard, corrosion-based economic losses due to maintenance, repair, and the replacement of existing structures and infrastructure account for up to 4% of gross domestic product (GDP) in well developed countries. One of the biggest issues in corrosion engineering is estimating service lifetime. Corrosion prediction has become very difficult, as there is no direct correlation with service lifetime and experimental lab results, usually as a result of discrepancies between accelerated testing and real corrosion processes. It is of major interest to forecast the impact of corrosion-based losses on society and the global economy, since existing structures and infrastructure are becoming old, and crucial decisions now need to be made to replace them. On the other hand, environmental protocols seek to reduce greenhouse effects. Therefore, low emission policies, in force, establish regulations for the next generation of materials and technologies. Advanced technologies and emergent materials will enable us to get through the next century. Great advances are currently in progress for the development of corrosion-resistant metal materials for different sectors, such as energy, transport, construction, and health. This Special Issue on the corrosion and protection of metals is focused on current trends in corrosion science, engineering, and technology, ranging from fundamental to applied research, thus covering subjects related to corrosion mechanisms and modelling, protection and inhibition processes, and mitigation strategies.

Keywords

high interstitial alloy --- molybdenum --- pitting corrosion --- passive film --- Cu-Mg alloy --- conform --- surface nanocrystallization --- corrosion resistance --- corrosion --- spring steel --- shot peening --- Mott–Schottky analysis --- point defect --- alloy --- magnesium --- SEM-EDS --- EIS --- mass loss --- corrosion layers --- duplex stainless steel --- intergranular corrosion --- stress corrosion cracking --- CPT --- DL-EPR --- aluminum --- heat exchanger --- galvanic corrosion --- simulation --- polarization --- electrochemical impedance spectroscopy --- high velocity oxy fuel coatings --- iron aluminide --- titanium carbide --- atmospheric corrosion --- strain measurement --- mild steel --- corrosion product --- residual stress --- AC current density --- crystallographic texture --- intergranular and transgranular cracks --- brass --- CuZn36Pb2As --- CuZn21Si3P --- dezincification --- simulated drinking water --- long immersion --- mortar --- reinforcement --- lean duplex --- stainless steel --- chloride --- alkalinity --- microstructure --- anodic polarization --- ISO 9223 --- corrosivity categories --- predictive models --- archipelagic regions --- Canary Islands --- X70 steel --- stress corrosion cracking (SCC) --- slow strain rate tests (SSRT) --- electrochemical impedance spectroscopy (EIS) --- cathodic potentials --- Atmospheric corrosion --- corrosion rates --- exposure angle --- orientation angle --- carbon steel --- double loop electrochemical potentiokinetic reactivation (DL−EPR) --- sensitization --- ultrasonic nanocrystal surface modification (UNSM) --- Inconel 718 --- n/a --- Mott-Schottky analysis


Book
Corrosion and Protection of Metals
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Introduction and Scope—During the last few decades, an enormous effort has been made to understand corrosion phenomena and their mechanisms, and to elucidate the causes that dramatically influence the service lifetime of metal materials. The performance of metal materials in aggressive environments is critical for a sustainable society. The failure of the material in service impacts the economy, the environment, health, and society. In this regard, corrosion-based economic losses due to maintenance, repair, and the replacement of existing structures and infrastructure account for up to 4% of gross domestic product (GDP) in well developed countries. One of the biggest issues in corrosion engineering is estimating service lifetime. Corrosion prediction has become very difficult, as there is no direct correlation with service lifetime and experimental lab results, usually as a result of discrepancies between accelerated testing and real corrosion processes. It is of major interest to forecast the impact of corrosion-based losses on society and the global economy, since existing structures and infrastructure are becoming old, and crucial decisions now need to be made to replace them. On the other hand, environmental protocols seek to reduce greenhouse effects. Therefore, low emission policies, in force, establish regulations for the next generation of materials and technologies. Advanced technologies and emergent materials will enable us to get through the next century. Great advances are currently in progress for the development of corrosion-resistant metal materials for different sectors, such as energy, transport, construction, and health. This Special Issue on the corrosion and protection of metals is focused on current trends in corrosion science, engineering, and technology, ranging from fundamental to applied research, thus covering subjects related to corrosion mechanisms and modelling, protection and inhibition processes, and mitigation strategies.

Keywords

History of engineering & technology --- high interstitial alloy --- molybdenum --- pitting corrosion --- passive film --- Cu-Mg alloy --- conform --- surface nanocrystallization --- corrosion resistance --- corrosion --- spring steel --- shot peening --- Mott-Schottky analysis --- point defect --- alloy --- magnesium --- SEM-EDS --- EIS --- mass loss --- corrosion layers --- duplex stainless steel --- intergranular corrosion --- stress corrosion cracking --- CPT --- DL-EPR --- aluminum --- heat exchanger --- galvanic corrosion --- simulation --- polarization --- electrochemical impedance spectroscopy --- high velocity oxy fuel coatings --- iron aluminide --- titanium carbide --- atmospheric corrosion --- strain measurement --- mild steel --- corrosion product --- residual stress --- AC current density --- crystallographic texture --- intergranular and transgranular cracks --- brass --- CuZn36Pb2As --- CuZn21Si3P --- dezincification --- simulated drinking water --- long immersion --- mortar --- reinforcement --- lean duplex --- stainless steel --- chloride --- alkalinity --- microstructure --- anodic polarization --- ISO 9223 --- corrosivity categories --- predictive models --- archipelagic regions --- Canary Islands --- X70 steel --- stress corrosion cracking (SCC) --- slow strain rate tests (SSRT) --- electrochemical impedance spectroscopy (EIS) --- cathodic potentials --- Atmospheric corrosion --- corrosion rates --- exposure angle --- orientation angle --- carbon steel --- double loop electrochemical potentiokinetic reactivation (DL−EPR) --- sensitization --- ultrasonic nanocrystal surface modification (UNSM) --- Inconel 718 --- high interstitial alloy --- molybdenum --- pitting corrosion --- passive film --- Cu-Mg alloy --- conform --- surface nanocrystallization --- corrosion resistance --- corrosion --- spring steel --- shot peening --- Mott-Schottky analysis --- point defect --- alloy --- magnesium --- SEM-EDS --- EIS --- mass loss --- corrosion layers --- duplex stainless steel --- intergranular corrosion --- stress corrosion cracking --- CPT --- DL-EPR --- aluminum --- heat exchanger --- galvanic corrosion --- simulation --- polarization --- electrochemical impedance spectroscopy --- high velocity oxy fuel coatings --- iron aluminide --- titanium carbide --- atmospheric corrosion --- strain measurement --- mild steel --- corrosion product --- residual stress --- AC current density --- crystallographic texture --- intergranular and transgranular cracks --- brass --- CuZn36Pb2As --- CuZn21Si3P --- dezincification --- simulated drinking water --- long immersion --- mortar --- reinforcement --- lean duplex --- stainless steel --- chloride --- alkalinity --- microstructure --- anodic polarization --- ISO 9223 --- corrosivity categories --- predictive models --- archipelagic regions --- Canary Islands --- X70 steel --- stress corrosion cracking (SCC) --- slow strain rate tests (SSRT) --- electrochemical impedance spectroscopy (EIS) --- cathodic potentials --- Atmospheric corrosion --- corrosion rates --- exposure angle --- orientation angle --- carbon steel --- double loop electrochemical potentiokinetic reactivation (DL−EPR) --- sensitization --- ultrasonic nanocrystal surface modification (UNSM) --- Inconel 718


Book
Optical Sensors for Structural Health Monitoring
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The evolution and need for the preservation and maintenance of existing structures, recent or historical, has fostered research in the area of structural monitoring, translated into the development of new techniques, equipment and sensors. Early detection of damage and accurate assessment of structural safety requires monitoring systems, the data from which can be used to calibrate numerical models for structural analysis and to assess safety. Data are obtained under real-time conditions, considering a group of parameters related to structural properties, such as stresses, accelerations, deformations and displacements. The analysis of structural properties is particularly relevant when the structure is subjected to extreme events (earthquakes, wind, fire and explosions, among others) or repeated loads (road/rail/air traffic, vibrations induced by equipment and machines), since they affect the structural integrity and put the users at risk. In order to prevent the severe damage and eventual collapse of structures, and consequent human, material and economic losses, the implementation of monitoring systems becomes a valuable tool for today's society. Monitoring of structures is becoming increasingly important, not only as preventive action, but also due to actual economic and sustainability concerns, to ensure a safer and more comfortable built environment.

Keywords

History of engineering & technology --- image-based measurement --- crack measurement --- shear cracks --- flexural cracks --- damage index --- nuclear power plant --- visual inspection --- photometric stereo --- 3D reconstruction --- rotating stall --- non-synchronous blade vibration --- blade tip timing --- centrifugal compressor --- distributed measurements --- fiber optic sensors --- scour --- soil-structure interaction --- winkler model --- equivalent length --- corrosion sensor --- oil and gas pipelines --- optical fibers --- Fiber Bragg Grating (FBG) --- distributed optical fiber strain sensing cable --- Brillouin scattering --- Rayleigh scattering --- strain sensing cable characterization --- elasto-plastic behavior --- strain sensitivity coefficients --- bridge damage detection --- fiber optic gyroscope --- deep learning --- convolutional neural network --- Fiber Bragg grating --- fiber optic sensors embedded in concrete --- strain measurement --- monitoring --- cracking --- weldable fiber optic sensors --- optical fiber sensors --- material extrusion --- hybrid processes --- temperature and strain monitoring --- similarity measure --- subway tunnel --- distributed vibration --- feature extraction --- autoencoder --- ultra-weak FBG --- hyperspectral imaging --- spectral indices --- random forest --- growth stage --- Fusarium head blight --- structural health monitoring --- load localization --- load estimation --- depth sensor --- artificial neural networks --- castigliano’s theorem --- crack detection --- crack opening --- distributed fiber optic sensors --- DIC --- UHPFRC --- testing --- SHM --- microcracking --- PAD --- environmental monitoring --- colorimetric detection --- water --- atmosphere --- image-based measurement --- crack measurement --- shear cracks --- flexural cracks --- damage index --- nuclear power plant --- visual inspection --- photometric stereo --- 3D reconstruction --- rotating stall --- non-synchronous blade vibration --- blade tip timing --- centrifugal compressor --- distributed measurements --- fiber optic sensors --- scour --- soil-structure interaction --- winkler model --- equivalent length --- corrosion sensor --- oil and gas pipelines --- optical fibers --- Fiber Bragg Grating (FBG) --- distributed optical fiber strain sensing cable --- Brillouin scattering --- Rayleigh scattering --- strain sensing cable characterization --- elasto-plastic behavior --- strain sensitivity coefficients --- bridge damage detection --- fiber optic gyroscope --- deep learning --- convolutional neural network --- Fiber Bragg grating --- fiber optic sensors embedded in concrete --- strain measurement --- monitoring --- cracking --- weldable fiber optic sensors --- optical fiber sensors --- material extrusion --- hybrid processes --- temperature and strain monitoring --- similarity measure --- subway tunnel --- distributed vibration --- feature extraction --- autoencoder --- ultra-weak FBG --- hyperspectral imaging --- spectral indices --- random forest --- growth stage --- Fusarium head blight --- structural health monitoring --- load localization --- load estimation --- depth sensor --- artificial neural networks --- castigliano’s theorem --- crack detection --- crack opening --- distributed fiber optic sensors --- DIC --- UHPFRC --- testing --- SHM --- microcracking --- PAD --- environmental monitoring --- colorimetric detection --- water --- atmosphere

Listing 1 - 10 of 14 << page
of 2
>>
Sort by