Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Nowadays, polymer self-assembly has become extremely attractive for both biological (drug delivery, tissue engineering, scaffolds) and non-biological (packaging, semiconductors) applications. In nature, a number of key biological processes are driven by polymer self-assembly, for instance protein folding. Impressive morphologies can be assembled from polymers thanks to a diverse range of interactions involved, e.g., electrostatics, hydrophobic, hots-guest interactions, etc. Both 2D and 3D tailor-made assemblies can be designed through modern powerful techniques and approaches such as the layer-by-layer and the Langmuir-Blodgett deposition, hard and soft templating. This Special Issue highlights contributions (research papers, short communications, review articles) that focus on recent developments in polymer self-assembly for both fundamental understanding the assembly phenomenon and real applications.
evaporative self-assembly --- encapsulation --- n/a --- microstructure --- solvent vapor annealing --- drug delivery --- polyhedral oligomeric silsesquioxane --- protein adsorption resistance --- photo-sensitive --- calcium carbonate --- fluorescence --- mucin --- polymerisation --- marine exopolysaccharide --- transglutaminases --- porous hydrogel --- adsorption --- aprotinin --- nanoparticle --- calcium alginate --- protamine --- nanocrystalline --- self-assembly --- morphological transformation --- cell culture --- block polymers --- stimuli-responsive polymer --- crosslinking --- mesoporous --- Ti6Al4V --- polymer --- flexible geometric confinement --- layer-by-layer --- surface modification --- co-synthesis --- nanolithography --- CaCO3 --- synthetic polypeptide --- air-liquid interface --- food industry --- stimuli-responsive polymers --- field-effect transistor --- Marangoni convection --- polymer scaffold --- collagen --- biomedicine --- thin films --- controlled release --- tension gradient --- monolayer
Choose an application
Thermoresponsive polymers, materials able to undergo sharp and often reversible phase separations in response to temperature stimuli, are introducing new paradigms in different fields, including medicine, advanced separations and oil and gas. In "Advances in Thermoresponsive Polymers", a clear picture of the frontiers reached in the understanding of the mechanistic behavior associated with temperature-induced phase separation, the influence of the polymer structure in regulating the macroscopic behavior of these materials and the latest applications for which thermoresponsive polymers show great potential is provided.
Technology: general issues --- Chemical engineering --- poly(N,N-diethylacrylamide) --- glycidyl methacrylate --- thermoresponsive copolymer --- α-chymotrypsin --- polymer-enzyme conjugate nanoparticle --- polymeric nanoparticles --- emulsion polymerization --- RAFT --- thermo-responsive polymers --- smart materials --- LCST --- phase diagram --- phase separation --- thermoresponsive star-shaped polymers --- poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines --- aqueous solutions --- light scattering --- turbidimetry --- microcalorimetry --- aggregation --- dual-stimuli-responsive materials --- thin films --- out-of-equilibrium --- thermoresponsive --- oligo(ethylene glycol) --- OEGylated --- poly(amino acid) --- ring-opening polymerization --- post-polymerization modification --- Ugi reaction --- synthesis --- star-shaped macromolecules --- calix[n]arene --- block and gradient copolymers of poly-2-alkyl-2-oxazolines --- conformation --- thermoresponsibility --- self-organization --- poly-N-vinylcaprolactam --- thermoresponsive polymers --- polymer-protein conjugates --- controlled release --- temperature-sensitive polymers --- hydrogels --- stereocomplexation --- polylactic acid --- temperature/reduction --- self-recombination --- thermosensitive polymers --- enzyme complexation --- reversible inactivation --- UCST polymers --- stimuli-responsive polymers --- electronic paramagnetic resonance --- spin probe --- nitroxides --- coil to globule --- poly(L-lysine) --- N-isopropylacrylamide --- aza-Michael addition reaction --- thermo-responsive --- pH-responsive --- biodegradable polymer
Choose an application
Thermoresponsive polymers, materials able to undergo sharp and often reversible phase separations in response to temperature stimuli, are introducing new paradigms in different fields, including medicine, advanced separations and oil and gas. In "Advances in Thermoresponsive Polymers", a clear picture of the frontiers reached in the understanding of the mechanistic behavior associated with temperature-induced phase separation, the influence of the polymer structure in regulating the macroscopic behavior of these materials and the latest applications for which thermoresponsive polymers show great potential is provided.
poly(N,N-diethylacrylamide) --- glycidyl methacrylate --- thermoresponsive copolymer --- α-chymotrypsin --- polymer-enzyme conjugate nanoparticle --- polymeric nanoparticles --- emulsion polymerization --- RAFT --- thermo-responsive polymers --- smart materials --- LCST --- phase diagram --- phase separation --- thermoresponsive star-shaped polymers --- poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines --- aqueous solutions --- light scattering --- turbidimetry --- microcalorimetry --- aggregation --- dual-stimuli-responsive materials --- thin films --- out-of-equilibrium --- thermoresponsive --- oligo(ethylene glycol) --- OEGylated --- poly(amino acid) --- ring-opening polymerization --- post-polymerization modification --- Ugi reaction --- synthesis --- star-shaped macromolecules --- calix[n]arene --- block and gradient copolymers of poly-2-alkyl-2-oxazolines --- conformation --- thermoresponsibility --- self-organization --- poly-N-vinylcaprolactam --- thermoresponsive polymers --- polymer-protein conjugates --- controlled release --- temperature-sensitive polymers --- hydrogels --- stereocomplexation --- polylactic acid --- temperature/reduction --- self-recombination --- thermosensitive polymers --- enzyme complexation --- reversible inactivation --- UCST polymers --- stimuli-responsive polymers --- electronic paramagnetic resonance --- spin probe --- nitroxides --- coil to globule --- poly(L-lysine) --- N-isopropylacrylamide --- aza-Michael addition reaction --- thermo-responsive --- pH-responsive --- biodegradable polymer
Choose an application
Thermoresponsive polymers, materials able to undergo sharp and often reversible phase separations in response to temperature stimuli, are introducing new paradigms in different fields, including medicine, advanced separations and oil and gas. In "Advances in Thermoresponsive Polymers", a clear picture of the frontiers reached in the understanding of the mechanistic behavior associated with temperature-induced phase separation, the influence of the polymer structure in regulating the macroscopic behavior of these materials and the latest applications for which thermoresponsive polymers show great potential is provided.
Technology: general issues --- Chemical engineering --- poly(N,N-diethylacrylamide) --- glycidyl methacrylate --- thermoresponsive copolymer --- α-chymotrypsin --- polymer-enzyme conjugate nanoparticle --- polymeric nanoparticles --- emulsion polymerization --- RAFT --- thermo-responsive polymers --- smart materials --- LCST --- phase diagram --- phase separation --- thermoresponsive star-shaped polymers --- poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines --- aqueous solutions --- light scattering --- turbidimetry --- microcalorimetry --- aggregation --- dual-stimuli-responsive materials --- thin films --- out-of-equilibrium --- thermoresponsive --- oligo(ethylene glycol) --- OEGylated --- poly(amino acid) --- ring-opening polymerization --- post-polymerization modification --- Ugi reaction --- synthesis --- star-shaped macromolecules --- calix[n]arene --- block and gradient copolymers of poly-2-alkyl-2-oxazolines --- conformation --- thermoresponsibility --- self-organization --- poly-N-vinylcaprolactam --- thermoresponsive polymers --- polymer-protein conjugates --- controlled release --- temperature-sensitive polymers --- hydrogels --- stereocomplexation --- polylactic acid --- temperature/reduction --- self-recombination --- thermosensitive polymers --- enzyme complexation --- reversible inactivation --- UCST polymers --- stimuli-responsive polymers --- electronic paramagnetic resonance --- spin probe --- nitroxides --- coil to globule --- poly(L-lysine) --- N-isopropylacrylamide --- aza-Michael addition reaction --- thermo-responsive --- pH-responsive --- biodegradable polymer --- poly(N,N-diethylacrylamide) --- glycidyl methacrylate --- thermoresponsive copolymer --- α-chymotrypsin --- polymer-enzyme conjugate nanoparticle --- polymeric nanoparticles --- emulsion polymerization --- RAFT --- thermo-responsive polymers --- smart materials --- LCST --- phase diagram --- phase separation --- thermoresponsive star-shaped polymers --- poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines --- aqueous solutions --- light scattering --- turbidimetry --- microcalorimetry --- aggregation --- dual-stimuli-responsive materials --- thin films --- out-of-equilibrium --- thermoresponsive --- oligo(ethylene glycol) --- OEGylated --- poly(amino acid) --- ring-opening polymerization --- post-polymerization modification --- Ugi reaction --- synthesis --- star-shaped macromolecules --- calix[n]arene --- block and gradient copolymers of poly-2-alkyl-2-oxazolines --- conformation --- thermoresponsibility --- self-organization --- poly-N-vinylcaprolactam --- thermoresponsive polymers --- polymer-protein conjugates --- controlled release --- temperature-sensitive polymers --- hydrogels --- stereocomplexation --- polylactic acid --- temperature/reduction --- self-recombination --- thermosensitive polymers --- enzyme complexation --- reversible inactivation --- UCST polymers --- stimuli-responsive polymers --- electronic paramagnetic resonance --- spin probe --- nitroxides --- coil to globule --- poly(L-lysine) --- N-isopropylacrylamide --- aza-Michael addition reaction --- thermo-responsive --- pH-responsive --- biodegradable polymer
Choose an application
This book is based on the Special Issue of the journal Molecules on “Smart and Functional Polymers”. The collected research and review articles focus on the synthesis and characterization of advanced functional polymers, polymers with specific structures and performances, current improvements in advanced polymer-based materials for various applications, and the opportunities and challenges in the future. The topics cover the emerging synthesis and characterization technology of smart polymers, core?shell structure polymers, stimuli-responsive polymers, anhydrous electrorheological materials fabricated from conducting polymers, reversible polymerization systems, and biomedical polymers for drug delivery and disease theranostics. In summary, this book provides a comprehensive overview of the latest synthesis approaches, representative structures and performances, and various applications of smart and functional polymers. It will serve as a useful reference for all researchers and readers interested in polymer sciences and technologies.
polymerization or post-polymerization modification methods --- chitosan --- diabetes therapy --- electronics --- molecular sieve --- antitumor --- chemical activation --- shape memory polymers --- chemotherapy --- poly(methacrylamide)s --- amphiphilic copolymer --- Vitamin E --- controlled polymerization --- composite --- fluoropolymers --- polymers for fabrication --- synergistic effect --- glucose sensitivity --- self-healing polymers --- emulsion polymerization --- electrorheological --- hydrogels --- polymers for water or effluent treatment --- core–shell structure --- hearing loss --- polymers for information storage --- polymers for sensing --- smart fluid --- saffron --- CO2 --- gel --- phase change --- perfluoroaryl azides --- chemical resistance --- gentamicin --- amphiphilicity --- controlled drug delivery --- paclitaxel --- nucleic acid delivery --- reversible polymerization --- polyether imidazole ionic liquid --- nanomedicine --- polymers for industrial catalysis --- polyvinyl alcohol --- tumor imaging --- endophytic exopolysaccharide --- particle processing --- and tissue engineering --- cochlear hair cell --- drug delivery --- melt-shear organization --- separation --- polyaniline --- castor oil --- polycaprolactone-diol --- pH responsive polymers --- fine-tuning --- heterogeneous catalysis --- sustainable polymers --- administration routes --- co-delivery systems --- hydrolyzable polyurea --- degradability --- and purification --- imaging --- post-polymerization functionalization --- core/shell particles --- polymer-based supramolecular chemistry --- polyamino acids --- catalyst --- cancer chemotherapy --- biomedical devices --- antidiabetic --- functional polymers used in food science --- viscoelastic --- multi-drug resistance --- stimuli-sensitive polymers --- polymeric nanoparticles --- diverse therapeutic areas --- glutaraldehyde --- renewable polymer materials used for agriculture --- solvent responsiveness --- phenylboronic acid --- Glycopolymer --- polymerization dispersion method --- functional polymers for diagnosis --- conducting polymer --- stimuli-responsive polymers --- versatile platform --- phase transition --- pH responsive --- core-shell nanoparticles --- clinical translation --- rare earth upconversion nanoparticles --- hydrophobic drug delivery --- breast cancer --- targeted drug delivery --- polyurethanes --- ?-NaYF4 --- and antimicrobial activity) --- micelle --- hydrophobicity --- polymer-based medical devices --- Staudinger reaction --- polymers with biological activity (e.g. --- albumin --- drug release --- and energy conversion --- applications
Listing 1 - 5 of 5 |
Sort by
|