Listing 1 - 7 of 7 |
Sort by
|
Choose an application
With the advances in nanomaterials and nanofabrication, surface-enhanced Raman spectroscopy (SERS) has been extensively developed and applied in the trace detection of various analytes in either a simple or a complicated sample matrix. This includes, but is not limited to, the detection of antibiotic residues in animal-producing meat products, detection of pathogenic bacteria in human body fluid, and detection of heavy metal contamination of water. This book, consisting two review articles and five research articles, covers the most recent progress and advancement in the development and application of various nanomaterials in SERS trace detection. In this book, a broad range of topics is covered, from the synthesis of novel nanomaterials that can provide improved reproducibility of SERS signals to the development of new application protocols that can facilitate the reliable detection of trace amounts of analytes without interfered by the sample matrices significantly. This book is a useful source for both new and advanced researchers in the field of SERS and its application.
SERS --- Ag NPs --- coffee ring --- pesticide detection --- Surface-enhanced Raman spectroscopy (SERS) --- wire mesh --- steel mesh --- SERS platform --- Escherichia coli --- Bacillus subtilis --- biomolecule --- surface enhanced Raman spectroscopy (SERS) --- nanomaterial --- analysis --- identification --- biology --- chemometrics --- resistance --- biosensing --- rapid detection --- Ag nanowires --- tartrazine --- large yellow croaker --- surface-enhanced Raman spectroscopy --- transformer aging --- concentration detection --- circulating tumor cells (CTC) --- prostate cancer (PC3) --- cervical carcinoma (HeLa) --- label-free detection
Choose an application
With the advances in nanomaterials and nanofabrication, surface-enhanced Raman spectroscopy (SERS) has been extensively developed and applied in the trace detection of various analytes in either a simple or a complicated sample matrix. This includes, but is not limited to, the detection of antibiotic residues in animal-producing meat products, detection of pathogenic bacteria in human body fluid, and detection of heavy metal contamination of water. This book, consisting two review articles and five research articles, covers the most recent progress and advancement in the development and application of various nanomaterials in SERS trace detection. In this book, a broad range of topics is covered, from the synthesis of novel nanomaterials that can provide improved reproducibility of SERS signals to the development of new application protocols that can facilitate the reliable detection of trace amounts of analytes without interfered by the sample matrices significantly. This book is a useful source for both new and advanced researchers in the field of SERS and its application.
Technology: general issues --- SERS --- Ag NPs --- coffee ring --- pesticide detection --- Surface-enhanced Raman spectroscopy (SERS) --- wire mesh --- steel mesh --- SERS platform --- Escherichia coli --- Bacillus subtilis --- biomolecule --- surface enhanced Raman spectroscopy (SERS) --- nanomaterial --- analysis --- identification --- biology --- chemometrics --- resistance --- biosensing --- rapid detection --- Ag nanowires --- tartrazine --- large yellow croaker --- surface-enhanced Raman spectroscopy --- transformer aging --- concentration detection --- circulating tumor cells (CTC) --- prostate cancer (PC3) --- cervical carcinoma (HeLa) --- label-free detection --- SERS --- Ag NPs --- coffee ring --- pesticide detection --- Surface-enhanced Raman spectroscopy (SERS) --- wire mesh --- steel mesh --- SERS platform --- Escherichia coli --- Bacillus subtilis --- biomolecule --- surface enhanced Raman spectroscopy (SERS) --- nanomaterial --- analysis --- identification --- biology --- chemometrics --- resistance --- biosensing --- rapid detection --- Ag nanowires --- tartrazine --- large yellow croaker --- surface-enhanced Raman spectroscopy --- transformer aging --- concentration detection --- circulating tumor cells (CTC) --- prostate cancer (PC3) --- cervical carcinoma (HeLa) --- label-free detection
Choose an application
With the advances in nanomaterials and nanofabrication, surface-enhanced Raman spectroscopy (SERS) has been extensively developed and applied in the trace detection of various analytes in either a simple or a complicated sample matrix. This includes, but is not limited to, the detection of antibiotic residues in animal-producing meat products, detection of pathogenic bacteria in human body fluid, and detection of heavy metal contamination of water. This book, consisting two review articles and five research articles, covers the most recent progress and advancement in the development and application of various nanomaterials in SERS trace detection. In this book, a broad range of topics is covered, from the synthesis of novel nanomaterials that can provide improved reproducibility of SERS signals to the development of new application protocols that can facilitate the reliable detection of trace amounts of analytes without interfered by the sample matrices significantly. This book is a useful source for both new and advanced researchers in the field of SERS and its application.
Technology: general issues --- SERS --- Ag NPs --- coffee ring --- pesticide detection --- Surface-enhanced Raman spectroscopy (SERS) --- wire mesh --- steel mesh --- SERS platform --- Escherichia coli --- Bacillus subtilis --- biomolecule --- surface enhanced Raman spectroscopy (SERS) --- nanomaterial --- analysis --- identification --- biology --- chemometrics --- resistance --- biosensing --- rapid detection --- Ag nanowires --- tartrazine --- large yellow croaker --- surface-enhanced Raman spectroscopy --- transformer aging --- concentration detection --- circulating tumor cells (CTC) --- prostate cancer (PC3) --- cervical carcinoma (HeLa) --- label-free detection
Choose an application
This book is dedicated to highlighting some relevant advances in the field of thin films and coatings based on two-dimensional crystals and layered nanomaterials. Due to their layered structure, graphene and a variety of new 2D inorganic nanosystems, called “graphene analogues”, have all attracted tremendous interest due to their unprecedented properties/superior performance, and may find applications in many fields from electronics to biotechnology. These two-dimensional systems are ultrathin and, hence, tend to be flexible, also presenting distinctive and nearly intrinsic characteristics, including electronic, magnetic, optical, thermal conductivity, and superconducting properties. Furthermore, the combination of different structures and synergetic effects may open new and unprecedented perspectives, making these ideal advanced materials for multifunctional assembled systems. As far as the field of coatings is concerned, new layered nanostructures may offer unique and multifunctional properties, including gas barrier, lubricant, conductive, magnetic, photoactive, self-cleaning, and/or antimicrobial surfaces. This book contains new findings on the synthesis and perspectives of multifunctional films that are at the forefront of the science and coating technologies.
MoS2 nanosheets --- composites coating --- corrosion --- transition metal nitrides --- electrochemical delamination --- Cu film --- dye-sensitized solar cells --- layered materials --- electroless NiP alloy --- bubble transfer --- PtPd --- photoresponse --- van der Waals heterostructures --- MoS2 --- stanene --- water --- microbial fuel cells --- counter electrode --- PEMFC --- combustion --- molybdenum disulfide --- silicene --- free-standing films --- energy conversion efficiency --- nanowire --- chemical vapor transport deposition --- transition metal carbides --- nondestructive --- reusability --- tungsten disulfide --- graphene --- surface enhanced Raman spectroscopy --- 2D --- reduced graphene oxide --- transition metal dichalcogenides --- epitaxial growth --- WS2 --- Pt nanoparticles --- graphene/MoS2/Si heterostructure --- mechanism --- thermal management --- transition metal carbonitrides --- interfaces --- photoluminescence --- air-cathode --- germanene --- 2D materials --- microhardness --- monolayer --- coatings --- stainless steel mesh electrode --- carbon nitride --- chemical vapor deposition --- two-dimensional materials --- plasma --- thermal conductivity --- plasmonic structure --- graphene suspension
Choose an application
Various types of metallic and composite structures are used in modern engineering practice. For aerospace, car industry, and civil engineering applications, the most important are thin-walled structures made of di erent types of metallic alloys, brous composites, laminates, and multifunctional materials with a more complicated geometry of reinforcement including nanoparticles or nano bres. The current applications in modern engineering require analysis of structures of various properties, shapes, and sizes (e.g., aircraft wings) including structural hybrid joints, subjected to di erent types of loadings, including quasi-static, dynamic, cyclic, thermal, impact, penetration, etc.The advanced metallic and composite structures should satisfy multiple structural functions during operating conditions. Structural functions include mechanical properties such as strength, sti ness, damage resistance, fracture toughness, and damping. Non-structural functions include electrical and thermal conductivities, sensing, actuation, energy harvesting, self-healing capability, electromagnetic shielding, etc.The aim of this SI is to understand the basic principles of damage growth and fracture processes in advanced metallic and composite structures that also include structural joints. Presently, it is widely recognized that important macroscopic properties, such as macroscopic sti ness and strength, are governed by processes that occur at one to several scales below the level of observation. A thorough understanding of how these processes influence the reduction of sti ffness and strength forms the key to the design of improved innovative structural elements and the analysis of existing ones.
Technology: general issues --- steel–concrete composite bridge --- I-shaped beam --- concrete creep --- temperature --- prediction --- experiment --- through-beam joint --- concrete filled steel tube (CFST) columns --- reinforced concrete (RC) --- axial compressive behaviour --- steel mesh --- local compression --- confined concrete --- height factor --- curved steel–concrete composite box beam --- two-node finite beam element with 26 DOFs --- long-term behavior --- age-adjusted effective modulus method --- C-section --- TH-section --- distortional mode --- medium length --- interactive buckling --- compression --- Koiter’s theory --- FEM --- dynamic pulse buckling --- composite stanchion --- FE analysis --- nonlinear analysis --- crashworthiness --- modulus of elasticity --- pine wood --- wood defects --- knots --- laboratory tests --- beams --- glued laminated timber --- ceramic-matrix composites (CMCs) --- minicomposite --- tensile --- damage --- fracture --- timber --- natural composite --- Kolsky method --- deformation diagrams --- wood species --- energy absorption --- wood model --- verification --- nonlinear stability --- square plate --- shear forces --- components of transverse forces in bending --- membrane components of transverse forces --- 4 methods (CPT, FSDT, S-FSDT, FEM) --- connection --- test --- bolt --- steel plate --- moisture content --- failure --- AlCrN --- arc current --- structure --- hardness --- adhesion --- wear --- turbine jet engine --- material tests --- ember-resistant alloys --- wood --- cohesive law --- digital image correlation --- fracture mechanics --- mixed mode I+II loading --- dual adhesive --- single lap joints --- numerical modeling --- artificial neural networks --- sandwich panels with corrugated channel core --- 3D-printed sandwich --- bending response --- mechanism maps --- geometrical optimization --- dislocation–boundary interaction --- dislocation–interface interaction --- deformation twin-boundary interaction --- size effect --- boundary structure --- boundary strengthening --- characterization techniques --- adhesive joint --- adhesive bond strength --- adhesive layer thickness
Choose an application
Various types of metallic and composite structures are used in modern engineering practice. For aerospace, car industry, and civil engineering applications, the most important are thin-walled structures made of di erent types of metallic alloys, brous composites, laminates, and multifunctional materials with a more complicated geometry of reinforcement including nanoparticles or nano bres. The current applications in modern engineering require analysis of structures of various properties, shapes, and sizes (e.g., aircraft wings) including structural hybrid joints, subjected to di erent types of loadings, including quasi-static, dynamic, cyclic, thermal, impact, penetration, etc.The advanced metallic and composite structures should satisfy multiple structural functions during operating conditions. Structural functions include mechanical properties such as strength, sti ness, damage resistance, fracture toughness, and damping. Non-structural functions include electrical and thermal conductivities, sensing, actuation, energy harvesting, self-healing capability, electromagnetic shielding, etc.The aim of this SI is to understand the basic principles of damage growth and fracture processes in advanced metallic and composite structures that also include structural joints. Presently, it is widely recognized that important macroscopic properties, such as macroscopic sti ness and strength, are governed by processes that occur at one to several scales below the level of observation. A thorough understanding of how these processes influence the reduction of sti ffness and strength forms the key to the design of improved innovative structural elements and the analysis of existing ones.
steel–concrete composite bridge --- I-shaped beam --- concrete creep --- temperature --- prediction --- experiment --- through-beam joint --- concrete filled steel tube (CFST) columns --- reinforced concrete (RC) --- axial compressive behaviour --- steel mesh --- local compression --- confined concrete --- height factor --- curved steel–concrete composite box beam --- two-node finite beam element with 26 DOFs --- long-term behavior --- age-adjusted effective modulus method --- C-section --- TH-section --- distortional mode --- medium length --- interactive buckling --- compression --- Koiter’s theory --- FEM --- dynamic pulse buckling --- composite stanchion --- FE analysis --- nonlinear analysis --- crashworthiness --- modulus of elasticity --- pine wood --- wood defects --- knots --- laboratory tests --- beams --- glued laminated timber --- ceramic-matrix composites (CMCs) --- minicomposite --- tensile --- damage --- fracture --- timber --- natural composite --- Kolsky method --- deformation diagrams --- wood species --- energy absorption --- wood model --- verification --- nonlinear stability --- square plate --- shear forces --- components of transverse forces in bending --- membrane components of transverse forces --- 4 methods (CPT, FSDT, S-FSDT, FEM) --- connection --- test --- bolt --- steel plate --- moisture content --- failure --- AlCrN --- arc current --- structure --- hardness --- adhesion --- wear --- turbine jet engine --- material tests --- ember-resistant alloys --- wood --- cohesive law --- digital image correlation --- fracture mechanics --- mixed mode I+II loading --- dual adhesive --- single lap joints --- numerical modeling --- artificial neural networks --- sandwich panels with corrugated channel core --- 3D-printed sandwich --- bending response --- mechanism maps --- geometrical optimization --- dislocation–boundary interaction --- dislocation–interface interaction --- deformation twin-boundary interaction --- size effect --- boundary structure --- boundary strengthening --- characterization techniques --- adhesive joint --- adhesive bond strength --- adhesive layer thickness
Choose an application
Various types of metallic and composite structures are used in modern engineering practice. For aerospace, car industry, and civil engineering applications, the most important are thin-walled structures made of di erent types of metallic alloys, brous composites, laminates, and multifunctional materials with a more complicated geometry of reinforcement including nanoparticles or nano bres. The current applications in modern engineering require analysis of structures of various properties, shapes, and sizes (e.g., aircraft wings) including structural hybrid joints, subjected to di erent types of loadings, including quasi-static, dynamic, cyclic, thermal, impact, penetration, etc.The advanced metallic and composite structures should satisfy multiple structural functions during operating conditions. Structural functions include mechanical properties such as strength, sti ness, damage resistance, fracture toughness, and damping. Non-structural functions include electrical and thermal conductivities, sensing, actuation, energy harvesting, self-healing capability, electromagnetic shielding, etc.The aim of this SI is to understand the basic principles of damage growth and fracture processes in advanced metallic and composite structures that also include structural joints. Presently, it is widely recognized that important macroscopic properties, such as macroscopic sti ness and strength, are governed by processes that occur at one to several scales below the level of observation. A thorough understanding of how these processes influence the reduction of sti ffness and strength forms the key to the design of improved innovative structural elements and the analysis of existing ones.
Technology: general issues --- steel–concrete composite bridge --- I-shaped beam --- concrete creep --- temperature --- prediction --- experiment --- through-beam joint --- concrete filled steel tube (CFST) columns --- reinforced concrete (RC) --- axial compressive behaviour --- steel mesh --- local compression --- confined concrete --- height factor --- curved steel–concrete composite box beam --- two-node finite beam element with 26 DOFs --- long-term behavior --- age-adjusted effective modulus method --- C-section --- TH-section --- distortional mode --- medium length --- interactive buckling --- compression --- Koiter’s theory --- FEM --- dynamic pulse buckling --- composite stanchion --- FE analysis --- nonlinear analysis --- crashworthiness --- modulus of elasticity --- pine wood --- wood defects --- knots --- laboratory tests --- beams --- glued laminated timber --- ceramic-matrix composites (CMCs) --- minicomposite --- tensile --- damage --- fracture --- timber --- natural composite --- Kolsky method --- deformation diagrams --- wood species --- energy absorption --- wood model --- verification --- nonlinear stability --- square plate --- shear forces --- components of transverse forces in bending --- membrane components of transverse forces --- 4 methods (CPT, FSDT, S-FSDT, FEM) --- connection --- test --- bolt --- steel plate --- moisture content --- failure --- AlCrN --- arc current --- structure --- hardness --- adhesion --- wear --- turbine jet engine --- material tests --- ember-resistant alloys --- wood --- cohesive law --- digital image correlation --- fracture mechanics --- mixed mode I+II loading --- dual adhesive --- single lap joints --- numerical modeling --- artificial neural networks --- sandwich panels with corrugated channel core --- 3D-printed sandwich --- bending response --- mechanism maps --- geometrical optimization --- dislocation–boundary interaction --- dislocation–interface interaction --- deformation twin-boundary interaction --- size effect --- boundary structure --- boundary strengthening --- characterization techniques --- adhesive joint --- adhesive bond strength --- adhesive layer thickness --- steel–concrete composite bridge --- I-shaped beam --- concrete creep --- temperature --- prediction --- experiment --- through-beam joint --- concrete filled steel tube (CFST) columns --- reinforced concrete (RC) --- axial compressive behaviour --- steel mesh --- local compression --- confined concrete --- height factor --- curved steel–concrete composite box beam --- two-node finite beam element with 26 DOFs --- long-term behavior --- age-adjusted effective modulus method --- C-section --- TH-section --- distortional mode --- medium length --- interactive buckling --- compression --- Koiter’s theory --- FEM --- dynamic pulse buckling --- composite stanchion --- FE analysis --- nonlinear analysis --- crashworthiness --- modulus of elasticity --- pine wood --- wood defects --- knots --- laboratory tests --- beams --- glued laminated timber --- ceramic-matrix composites (CMCs) --- minicomposite --- tensile --- damage --- fracture --- timber --- natural composite --- Kolsky method --- deformation diagrams --- wood species --- energy absorption --- wood model --- verification --- nonlinear stability --- square plate --- shear forces --- components of transverse forces in bending --- membrane components of transverse forces --- 4 methods (CPT, FSDT, S-FSDT, FEM) --- connection --- test --- bolt --- steel plate --- moisture content --- failure --- AlCrN --- arc current --- structure --- hardness --- adhesion --- wear --- turbine jet engine --- material tests --- ember-resistant alloys --- wood --- cohesive law --- digital image correlation --- fracture mechanics --- mixed mode I+II loading --- dual adhesive --- single lap joints --- numerical modeling --- artificial neural networks --- sandwich panels with corrugated channel core --- 3D-printed sandwich --- bending response --- mechanism maps --- geometrical optimization --- dislocation–boundary interaction --- dislocation–interface interaction --- deformation twin-boundary interaction --- size effect --- boundary structure --- boundary strengthening --- characterization techniques --- adhesive joint --- adhesive bond strength --- adhesive layer thickness
Listing 1 - 7 of 7 |
Sort by
|