Narrow your search
Listing 1 - 8 of 8
Sort by

Book
Hopf Algebras, Quantum Groups and Yang-Baxter Equations
Author:
ISBN: 3038973254 3038973246 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Yang-Baxter equation first appeared in theoretical physics, in a paper by the Nobel laureate C.N. Yang and in the work of R.J. Baxter in the field of Statistical Mechanics. At the 1990 International Mathematics Congress, Vladimir Drinfeld, Vaughan F. R. Jones, and Edward Witten were awarded Fields Medals for their work related to the Yang-Baxter equation. It turned out that this equation is one of the basic equations in mathematical physics; more precisely, it is used for introducing the theory of quantum groups. It also plays a crucial role in: knot theory, braided categories, the analysis of integrable systems, non-commutative descent theory, quantum computing, non-commutative geometry, etc. Many scientists have used the axioms of various algebraic structures (quasi-triangular Hopf algebras, Yetter-Drinfeld categories, quandles, group actions, Lie (super)algebras, brace structures, (co)algebra structures, Jordan triples, Boolean algebras, relations on sets, etc.) or computer calculations (and Grobner bases) in order to produce solutions for the Yang-Baxter equation. However, the full classification of its solutions remains an open problem. At present, the study of solutions of the Yang-Baxter equation attracts the attention of a broad circle of scientists. The current volume highlights various aspects of the Yang-Baxter equation, related algebraic structures, and applications.


Book
Vector bundles on degenerations of elliptic curves and Yang-Baxter equations.
Authors: ---
ISBN: 9780821872925 Year: 2012 Volume: volume 220, number 1035 Publisher: Providence American Mathematical Society

The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems
Authors: ---
ISBN: 1281346411 9786611346416 0191523925 9780191523922 6611346414 0198530684 9780198530688 0198530684 9780198530688 1383024995 Year: 2005 Volume: 29 Publisher: Oxford ; New York : Oxford University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equation and its applications, which is an important area in representation theory and quantum groups.


Book
Meanders
Author:
ISBN: 3110531712 3110533022 9783110533026 9783110533033 3110533030 311053147X Year: 2017 Publisher: Berlin Boston

Loading...
Export citation

Choose an application

Bookmark

Abstract

This unique book's subject is meanders (connected, oriented, non-self-intersecting planar curves intersecting the horizontal line transversely) in the context of dynamical systems. By interpreting the transverse intersection points as vertices and the arches arising from these curves as directed edges, meanders are introduced from the graphtheoretical perspective. Supplementing the rigorous results, mathematical methods, constructions, and examples of meanders with a large number of insightful figures, issues such as connectivity and the number of connected components of meanders are studied in detail with the aid of collapse and multiple collapse, forks, and chambers. Moreover, the author introduces a large class of Morse meanders by utilizing the right and left one-shift maps, and presents connections to Sturm global attractors, seaweed and Frobenius Lie algebras, and the classical Yang-Baxter equation. Contents Seaweed Meanders Meanders Morse Meanders and Sturm Global Attractors Right and Left One-Shifts Connection Graphs of Type I, II, III and IV Meanders and the Temperley-Lieb Algebra Representations of Seaweed Lie Algebras CYBE and Seaweed Meanders


Book
Yang-Baxter deformation of 2D non-linear Sigma models : towards applications to AdS/CFT
Author:
ISBN: 9811617031 9811617023 Year: 2021 Publisher: Cham, Switzerland : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In mathematical physics, one of the fascinating issues is the study of integrable systems. In particular, non-perturbative techniques that have been developed have triggered significant insight for real physics. There are basically two notions of integrability: classical integrability and quantum integrability. In this book, the focus is on the former, classical integrability. When the system has a finite number of degrees of freedom, it has been well captured by the Arnold–Liouville theorem. However, when the number of degrees of freedom is infinite, as in classical field theories, the integrable structure is enriched profoundly. In fact, the study of classically integrable field theories has a long history and various kinds of techniques, including the classical inverse scattering method, which have been developed so far. In previously published books, these techniques have been collected and well described and are easy to find in traditional, standard textbooks. One of the intriguing subjects in classically integrable systems is the investigation of deformations preserving integrability. Usually, it is not considered systematic to perform such a deformation, and one must study systems case by case and show the integrability of the deformed systems by constructing the associated Lax pair or action-angle variables. Recently, a new, systematic method to perform integrable deformations of 2D non-linear sigma models was developed. It was invented by C. Klimcik in 2002, and the integrability of the deformed sigma models was shown in 2008. The original work was done for 2D principal chiral models, but it has been generalized in various directions nowadays. In this book, the recent progress on this Yang–Baxter deformation is described in a pedagogical manner, including some simple examples. Applications of Yang–Baxter deformation to string theory are also described briefly. .

Introduction to the quantum Yang-Baxter equation and quantum groups: an algebraic approach
Authors: ---
ISBN: 0792347218 1461368421 1461541093 Year: 1997 Volume: 423 Publisher: Dordrecht Kluwer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Chapter 1 The algebraic prerequisites for the book are covered here and in the appendix. This chapter should be used as reference material and should be consulted as needed. A systematic treatment of algebras, coalgebras, bialgebras, Hopf algebras, and represen­ tations of these objects to the extent needed for the book is given. The material here not specifically cited can be found for the most part in [Sweedler, 1969] in one form or another, with a few exceptions. A great deal of emphasis is placed on the coalgebra which is the dual of n x n matrices over a field. This is the most basic example of a coalgebra for our purposes and is at the heart of most algebraic constructions described in this book. We have found pointed bialgebras useful in connection with solving the quantum Yang-Baxter equation. For this reason we develop their theory in some detail. The class of examples described in Chapter 6 in connection with the quantum double consists of pointed Hopf algebras. We note the quantized enveloping algebras described Hopf algebras. Thus for many reasons pointed bialgebras are elsewhere are pointed of fundamental interest in the study of the quantum Yang-Baxter equation and objects quantum groups.

Quantum groups in two-dimensional physics.
Authors: --- ---
ISBN: 0521460654 Year: 1996 Publisher: Cambridge Cambridge University press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Listing 1 - 8 of 8
Sort by