Narrow your search
Listing 1 - 4 of 4
Sort by

Dissertation
Master thesis : Microstructural characterization of the laser clad 316L+SiC composite coating
Authors: --- --- --- ---
Year: 2019 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this work the SS316L + SiC Metal Matrix Composites (MMCs) was characterized. Different amount of Silicon Carbide (SiC) was added as reinforcements in a matrix of 316L Stainless Steel (SS316L): 10% in volume and 20% in volume. The composites were produced by Laser Cladding (LC). 
An evolution of the characteristics of the cladded deposit was observed with the change of LC process parameters, such as power, scanning speed and powders utilized. For the production of SS316L + 20% SiC deposit the powders were used in original (as-produced) and milled conditions. While for the SS316L + 10% deposit only original powders were utilized. 
The deposits with 10% in volume of original SiC powders and with 20% in volume of milled SiC powders exhibit a compact structure with absence of porosity and/or cracks, and good interaction with the substrate.
The characterization was made by means of Optical Microscope (OM), Scanning Electron Microscope (SEM), Differential Thermal Analysis (DTA), Thermo Gravimetry Analysis (TGA), Macro-hardness tests and chemical analysis. 
The powders of the two different compositions and after the milling process were characterized, especially by different thermal analysis and microscope observations. Considering their characteristic, the best condition for the Additive Manufacturing (AM) process was chosen and the samples were fabricated by LC. The microstructural characterization on the deposits revealed the formation of carbides that reinforce the matrix. The morphology and the composition of phases of the different deposits were compared by using microscope observations and thermal analyses.


Book
Selected Papers from Experimental Stress Analysis 2020
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue consists of selected papers from the Experimental Stress Analysis 2020 conference. Experimental Stress Analysis 2020 was organized with the support of the Czech Society for Mechanics, Expert Group of Experimental Mechanics, and was, for this particular year, held online in 19–22 October 2020. The objectives of the conference included identification of current situation, sharing professional experience and knowledge, discussing new theoretical and practical findings, and the establishment and strengthening of relationships between universities, companies, and scientists from the field of experimental mechanics in mechanical and civil engineering. The topics of the conference were focused on experimental research on materials and structures subjected to mechanical, thermal–mechanical, and dynamic loading, including damage, fatigue, and fracture analyses. The selected papers deal with top-level contemporary phenomena, such as modern durable materials, numerical modeling and simulations, and innovative non-destructive materials’ testing.

Keywords

Technology: general issues --- History of engineering & technology --- residual stresses --- neutron diffraction --- three axis setting --- high resolution --- bent crystal monochromator --- bent crystal analyzer --- stainless steel 316L --- additive manufacturing --- multiaxial loading --- plasticity --- digital image correlation method --- hill yield criterion --- isotropic hardening --- finite element method (FEM) --- straightening process --- three-point bending --- FEM --- control strategy --- billet straightening --- multiaxial fatigue --- high-cycle fatigue --- multiaxial fatigue experiments --- S-N curve approximation --- laser welding --- pressure vessel steel --- microstructure --- X-ray and neutron diffraction --- high-cycle fatigue tests --- wearable --- flexible --- structure --- stiffness --- biomedical --- mechanics --- simulation --- pattern --- 3D print --- PA12 --- tram --- pedestrian --- crash --- windshield model --- HIC --- hole-drilling --- PhotoStress --- digital image correlation --- experimental analysis --- finite element analysis --- composite --- thermoplastic --- interlaminar strength --- polyphenylensulfid --- polyetheretherketone --- polyaryletherketone --- curved beam --- NDE --- infrared thermography --- Infrared Nondestructive Testing --- CFRP --- Anand material model --- material parameters --- ABS-M30 --- indentation test --- genetic algorithm --- acoustic emission --- CFRP composite tube --- unsupervised learning approach --- failure mechanism --- n/a


Book
Selected Papers from Experimental Stress Analysis 2020
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue consists of selected papers from the Experimental Stress Analysis 2020 conference. Experimental Stress Analysis 2020 was organized with the support of the Czech Society for Mechanics, Expert Group of Experimental Mechanics, and was, for this particular year, held online in 19–22 October 2020. The objectives of the conference included identification of current situation, sharing professional experience and knowledge, discussing new theoretical and practical findings, and the establishment and strengthening of relationships between universities, companies, and scientists from the field of experimental mechanics in mechanical and civil engineering. The topics of the conference were focused on experimental research on materials and structures subjected to mechanical, thermal–mechanical, and dynamic loading, including damage, fatigue, and fracture analyses. The selected papers deal with top-level contemporary phenomena, such as modern durable materials, numerical modeling and simulations, and innovative non-destructive materials’ testing.


Book
Selected Papers from Experimental Stress Analysis 2020
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue consists of selected papers from the Experimental Stress Analysis 2020 conference. Experimental Stress Analysis 2020 was organized with the support of the Czech Society for Mechanics, Expert Group of Experimental Mechanics, and was, for this particular year, held online in 19–22 October 2020. The objectives of the conference included identification of current situation, sharing professional experience and knowledge, discussing new theoretical and practical findings, and the establishment and strengthening of relationships between universities, companies, and scientists from the field of experimental mechanics in mechanical and civil engineering. The topics of the conference were focused on experimental research on materials and structures subjected to mechanical, thermal–mechanical, and dynamic loading, including damage, fatigue, and fracture analyses. The selected papers deal with top-level contemporary phenomena, such as modern durable materials, numerical modeling and simulations, and innovative non-destructive materials’ testing.

Keywords

Technology: general issues --- History of engineering & technology --- residual stresses --- neutron diffraction --- three axis setting --- high resolution --- bent crystal monochromator --- bent crystal analyzer --- stainless steel 316L --- additive manufacturing --- multiaxial loading --- plasticity --- digital image correlation method --- hill yield criterion --- isotropic hardening --- finite element method (FEM) --- straightening process --- three-point bending --- FEM --- control strategy --- billet straightening --- multiaxial fatigue --- high-cycle fatigue --- multiaxial fatigue experiments --- S-N curve approximation --- laser welding --- pressure vessel steel --- microstructure --- X-ray and neutron diffraction --- high-cycle fatigue tests --- wearable --- flexible --- structure --- stiffness --- biomedical --- mechanics --- simulation --- pattern --- 3D print --- PA12 --- tram --- pedestrian --- crash --- windshield model --- HIC --- hole-drilling --- PhotoStress --- digital image correlation --- experimental analysis --- finite element analysis --- composite --- thermoplastic --- interlaminar strength --- polyphenylensulfid --- polyetheretherketone --- polyaryletherketone --- curved beam --- NDE --- infrared thermography --- Infrared Nondestructive Testing --- CFRP --- Anand material model --- material parameters --- ABS-M30 --- indentation test --- genetic algorithm --- acoustic emission --- CFRP composite tube --- unsupervised learning approach --- failure mechanism --- residual stresses --- neutron diffraction --- three axis setting --- high resolution --- bent crystal monochromator --- bent crystal analyzer --- stainless steel 316L --- additive manufacturing --- multiaxial loading --- plasticity --- digital image correlation method --- hill yield criterion --- isotropic hardening --- finite element method (FEM) --- straightening process --- three-point bending --- FEM --- control strategy --- billet straightening --- multiaxial fatigue --- high-cycle fatigue --- multiaxial fatigue experiments --- S-N curve approximation --- laser welding --- pressure vessel steel --- microstructure --- X-ray and neutron diffraction --- high-cycle fatigue tests --- wearable --- flexible --- structure --- stiffness --- biomedical --- mechanics --- simulation --- pattern --- 3D print --- PA12 --- tram --- pedestrian --- crash --- windshield model --- HIC --- hole-drilling --- PhotoStress --- digital image correlation --- experimental analysis --- finite element analysis --- composite --- thermoplastic --- interlaminar strength --- polyphenylensulfid --- polyetheretherketone --- polyaryletherketone --- curved beam --- NDE --- infrared thermography --- Infrared Nondestructive Testing --- CFRP --- Anand material model --- material parameters --- ABS-M30 --- indentation test --- genetic algorithm --- acoustic emission --- CFRP composite tube --- unsupervised learning approach --- failure mechanism

Listing 1 - 4 of 4
Sort by