Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULiège (1)

VIVES (1)

Vlaams Parlement (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2021 (2)

Listing 1 - 2 of 2
Sort by

Book
Dynamics under Uncertainty: Modeling Simulation and Complexity
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The dynamics of systems have proven to be very powerful tools in understanding the behavior of different natural phenomena throughout the last two centuries. However, the attributes of natural systems are observed to deviate from their classical states due to the effect of different types of uncertainties. Actually, randomness and impreciseness are the two major sources of uncertainties in natural systems. Randomness is modeled by different stochastic processes and impreciseness could be modeled by fuzzy sets, rough sets, Dempster–Shafer theory, etc.

Keywords

Research & information: general --- Mathematics & science --- Fuzzy MARCOS --- Fuzzy PIPRECIA --- traffic risk --- TFN --- MCDM --- dual-rotor --- multi-frequency excitation --- non-intrusive calculation --- metamodel --- NDSL model --- AHP --- criteria weights --- pairwise comparisons --- AES --- PC --- MIMO discrete-time system --- state feedback and output feedback --- parameter dependence --- D numbers --- fuzzy sets --- DEMATEL --- multi-criteria decision-making --- multi-criteria optimization --- RAFSI method --- performance comparison --- rank reversal --- Magnetic Resonance Imaging (MRI) --- wavelet transform --- GARCH --- LLA --- LDA --- KNN --- BWM --- BWM-I --- multi-criteria --- renewable energy --- the CCSD method --- the ITARA method --- the MARCOS method --- stackers --- logistics --- ensemble techniques --- data mining --- classification and discrimination --- linear regression --- applied mathematics general --- prediction theory --- theory of mathematical modeling --- medical applications --- empathic building --- fuzzy grey cognitive maps --- Thayer's emotion model --- artificial emotions --- affective computing --- Fuzzy MARCOS --- Fuzzy PIPRECIA --- traffic risk --- TFN --- MCDM --- dual-rotor --- multi-frequency excitation --- non-intrusive calculation --- metamodel --- NDSL model --- AHP --- criteria weights --- pairwise comparisons --- AES --- PC --- MIMO discrete-time system --- state feedback and output feedback --- parameter dependence --- D numbers --- fuzzy sets --- DEMATEL --- multi-criteria decision-making --- multi-criteria optimization --- RAFSI method --- performance comparison --- rank reversal --- Magnetic Resonance Imaging (MRI) --- wavelet transform --- GARCH --- LLA --- LDA --- KNN --- BWM --- BWM-I --- multi-criteria --- renewable energy --- the CCSD method --- the ITARA method --- the MARCOS method --- stackers --- logistics --- ensemble techniques --- data mining --- classification and discrimination --- linear regression --- applied mathematics general --- prediction theory --- theory of mathematical modeling --- medical applications --- empathic building --- fuzzy grey cognitive maps --- Thayer's emotion model --- artificial emotions --- affective computing


Book
Dynamics under Uncertainty: Modeling Simulation and Complexity
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The dynamics of systems have proven to be very powerful tools in understanding the behavior of different natural phenomena throughout the last two centuries. However, the attributes of natural systems are observed to deviate from their classical states due to the effect of different types of uncertainties. Actually, randomness and impreciseness are the two major sources of uncertainties in natural systems. Randomness is modeled by different stochastic processes and impreciseness could be modeled by fuzzy sets, rough sets, Dempster–Shafer theory, etc.

Listing 1 - 2 of 2
Sort by