Narrow your search
Listing 1 - 7 of 7
Sort by

Dissertation
Effects of in situ Joule annealing on spin injection and spin diffusion through permalloy/tantalum interfaces
Authors: --- --- --- --- --- et al.
Year: 2022 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

According to the current version of Moore's law, the performance of modern computers is expected to double every 1.5 years. However, as the miniaturization of the transistor components approaches the ultimate size of a few atoms, the exponential trend is expected to flatten by 2025. Recent years have seen the rise of numerous new promising technologies able to enhance even more the performances of modern computing. Among them, spintronics combines the functionalities of usual logic operations as well as data storage under the form of discrete electron spin states. Recent works have shown the possibility to generate microwave frequency oscillations in ferromagnetic systems by pure spin current injection, to achieve magnetization reversal in magnetic spin valves through pure spin currents, and to create memory devices based on current-stimulated migration of domain walls as well as devices powered by the radio frequency waves used in the domain of telecommunications, etc. All these applications require that spin currents can survive over the longest distances possible and that interfaces between different materials composing the devices can be as transparent as possible. Recent works have suggested the possibility to improve the interface quality by local Joule annealing. In this thesis, we lay the foundations at ULiège for the quantitative characterization of spin current injection and diffusion through interfaces between a ferromagnetic and a heavy metal layer. The objectives of this thesis are (i) to measure effects of modulation of damping via spin injection and to electrically detect the spin pumping, (ii) to obtain characteristic physical quantities proper to the device, such as the spin Hall angle and the spin mixing conductance and (iii) to explore the effects of local Joule annealing on the interface between bilayers of Py/Ta and on the magnetic properties of the former. In that perspective, cavity-based and broadband ferromagnetic resonance spectroscopy techniques were optimized for these specific applications.


Book
Advances in Antiferromagnetic Spintronics
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Antiferromagnetic spintronics is an emerging topic in spintronics that is attracting interest due to its wide range of advantages, including terahertz operation, memory without stray fields, and highly efficient spin generation. The discussion of this topic covers aspects ranging from the development of new antiferromagnetic materials to the applications of these materials in devices. Traditionally, antiferromagnets were treated as less common magnetic materials for fundamental studies and applications. However, recent miniaturisation and high-frequency operation have revealed that they are advantageous over conventional ferromagnets. This Special Issue reviews the current status and future perspectives of antiferromagnetic spintronics.


Book
Advances in Antiferromagnetic Spintronics
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Antiferromagnetic spintronics is an emerging topic in spintronics that is attracting interest due to its wide range of advantages, including terahertz operation, memory without stray fields, and highly efficient spin generation. The discussion of this topic covers aspects ranging from the development of new antiferromagnetic materials to the applications of these materials in devices. Traditionally, antiferromagnets were treated as less common magnetic materials for fundamental studies and applications. However, recent miniaturisation and high-frequency operation have revealed that they are advantageous over conventional ferromagnets. This Special Issue reviews the current status and future perspectives of antiferromagnetic spintronics.

Keywords

Technology: general issues --- History of engineering & technology --- Energy industries & utilities --- magnetoelectric effect --- antiferromagnetism --- Cr2O3 thin film --- exchange bias --- antiferromagnetic spintronics --- spintronics --- MnN --- magnetism and magnetic materials --- antiferromagnets --- Heusler alloys --- blocking temperature --- spintronic devices --- perpendicular magnetic anisotropy --- ferrimagnet --- perpendicular exchange bias --- amorphous thin films --- spintronic applications --- magnons --- synthetic antiferromagnets --- antiferromagnetic resonance --- micromagnetics --- spin pumping --- spin-orbit torque --- insulating antiferromagnet --- sub-terahertz waves --- spin-Hall effect --- garnet ferrite --- compensated ferrimagnet --- metal organic decomposition --- magnetoelectric effect --- antiferromagnetism --- Cr2O3 thin film --- exchange bias --- antiferromagnetic spintronics --- spintronics --- MnN --- magnetism and magnetic materials --- antiferromagnets --- Heusler alloys --- blocking temperature --- spintronic devices --- perpendicular magnetic anisotropy --- ferrimagnet --- perpendicular exchange bias --- amorphous thin films --- spintronic applications --- magnons --- synthetic antiferromagnets --- antiferromagnetic resonance --- micromagnetics --- spin pumping --- spin-orbit torque --- insulating antiferromagnet --- sub-terahertz waves --- spin-Hall effect --- garnet ferrite --- compensated ferrimagnet --- metal organic decomposition


Book
Advances in Antiferromagnetic Spintronics
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Antiferromagnetic spintronics is an emerging topic in spintronics that is attracting interest due to its wide range of advantages, including terahertz operation, memory without stray fields, and highly efficient spin generation. The discussion of this topic covers aspects ranging from the development of new antiferromagnetic materials to the applications of these materials in devices. Traditionally, antiferromagnets were treated as less common magnetic materials for fundamental studies and applications. However, recent miniaturisation and high-frequency operation have revealed that they are advantageous over conventional ferromagnets. This Special Issue reviews the current status and future perspectives of antiferromagnetic spintronics.


Book
Quantum Transport in Mesoscopic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.

Keywords

Technology: general issues --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport


Book
Quantum Transport in Mesoscopic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.

Keywords

Technology: general issues --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport


Book
Quantum Transport in Mesoscopic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.

Keywords

quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport

Listing 1 - 7 of 7
Sort by