Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
This is a Special Issue on Molecular Electronics which provides an overview of the field and will be useful for both theoreticians and experimentalists. Topics include protein-based electronics, field-induced trans-to-cis isomerisation, phonon thermal conductance, spin-dependent transport, attenuation factors, HOMO-LUMO gap corrections and nanofabrication techniques.
Technology: general issues --- molecular electronics --- self-assembly films --- Langmuir-Blodgett films --- electrografting --- top-contact electrode --- molecular junctions --- attenuation factor --- density functional theory --- graphene --- single molecule junctions --- metal/molecule interface --- energy level alignment --- conductance --- electron transport --- DFT + Σ --- thermoelectricity --- phonon --- thermal conductance --- OPE3 --- anchor groups --- pyridyl --- thiol --- methyl sulphide --- carbodithioate --- spin polarization --- magnetic chain with AAH modulation --- light irradiation --- single-molecule junctions --- STM break-junction --- in-situ isomerisation --- carotenoids --- azurin --- solid-state junction --- biomolecular electronics --- electronic transport --- molecular dynamics --- n/a
Choose an application
This is a Special Issue on Molecular Electronics which provides an overview of the field and will be useful for both theoreticians and experimentalists. Topics include protein-based electronics, field-induced trans-to-cis isomerisation, phonon thermal conductance, spin-dependent transport, attenuation factors, HOMO-LUMO gap corrections and nanofabrication techniques.
molecular electronics --- self-assembly films --- Langmuir-Blodgett films --- electrografting --- top-contact electrode --- molecular junctions --- attenuation factor --- density functional theory --- graphene --- single molecule junctions --- metal/molecule interface --- energy level alignment --- conductance --- electron transport --- DFT + Σ --- thermoelectricity --- phonon --- thermal conductance --- OPE3 --- anchor groups --- pyridyl --- thiol --- methyl sulphide --- carbodithioate --- spin polarization --- magnetic chain with AAH modulation --- light irradiation --- single-molecule junctions --- STM break-junction --- in-situ isomerisation --- carotenoids --- azurin --- solid-state junction --- biomolecular electronics --- electronic transport --- molecular dynamics --- n/a
Choose an application
This is a Special Issue on Molecular Electronics which provides an overview of the field and will be useful for both theoreticians and experimentalists. Topics include protein-based electronics, field-induced trans-to-cis isomerisation, phonon thermal conductance, spin-dependent transport, attenuation factors, HOMO-LUMO gap corrections and nanofabrication techniques.
Technology: general issues --- molecular electronics --- self-assembly films --- Langmuir-Blodgett films --- electrografting --- top-contact electrode --- molecular junctions --- attenuation factor --- density functional theory --- graphene --- single molecule junctions --- metal/molecule interface --- energy level alignment --- conductance --- electron transport --- DFT + Σ --- thermoelectricity --- phonon --- thermal conductance --- OPE3 --- anchor groups --- pyridyl --- thiol --- methyl sulphide --- carbodithioate --- spin polarization --- magnetic chain with AAH modulation --- light irradiation --- single-molecule junctions --- STM break-junction --- in-situ isomerisation --- carotenoids --- azurin --- solid-state junction --- biomolecular electronics --- electronic transport --- molecular dynamics
Choose an application
As we all know, electrons carry both charge and spin. The processing of information in conventional electronic devices is based only on the charge of electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors, and insulators are the basic materials that constitute the components of electronic devices, and these types of materials have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals (including zero-gap half-metals), magnetic semiconductors (including spin-gapless semiconductors), dilute magnetic semiconductors, and magnetic insulators are the materials that will form the basis for spintronic devices. This book aims to collect a range of papers on novel materials that have intriguing physical properties and numerous potential practical applications in spintronics.
n/a --- doping --- spin polarization --- first-principle --- quaternary Heusler alloy --- electronic structure --- Prussian blue analogue --- first-principles calculations --- first-principles calculation --- magnetic anisotropy --- pressure --- Nb (100) surface --- Dzyaloshinskii–Moriya interaction --- optical properties --- skyrmion --- equiatomic quaternary Heusler compounds --- Heusler alloy --- interface structure --- first principles --- magnetism --- spin transport --- first-principles method --- monolayer CrSi2 --- half-metallic material --- H adsorption --- half-metallic materials --- lattice dynamics --- spin gapless semiconductor --- first-principle calculations --- half-metallicity --- bulk CrSi2 --- covalent hybridization --- H diffusion --- electronic property --- MgBi2O6 --- physical nature --- Mo doping --- phase stability --- mechanical anisotropy --- quaternary Heusler compound --- magnetic properties --- exchange energy --- Dzyaloshinskii-Moriya interaction
Choose an application
Positrons can be used to study metallic defects. Positron annihilation experiments have been carried out to identify the defects in complex oxides. Positrons have also been used to study the Bose–Einstein condensation (BEC). Ps-BEC can be used to measure antigravity using atomic interferometers. This Special Issue hopes to bring awareness of the various aspects of positron interactions to the larger physics communities. We invite authors to submit articles from all areas of physics.
Research & information: general --- photoionization --- photoabsorption --- photodetachment --- positronium negative ion --- Feshbach and shape resonance states --- correlated exponential wave functions --- complex-coordinate rotation method --- positron-impact excitation --- variational polarized orbital method --- Born approximation --- Coulomb-dipole theory --- positron vs. electron impact ionization --- antihydrogen --- radiative attachment --- antihydrogen ion --- analytical --- hydrogen ion --- solar flares --- coronal mass ejections --- shocks --- positrons --- positronium --- positron annihilation --- pion decay --- autoionization states --- doubly excited states --- Feshbach states --- resonances --- shape resonances --- electron-impact ionization --- hydrogen --- positron-impact ionization --- velocity field --- vortices --- Electron-Positron Scatterings --- atoms and molecules --- cross sections and spin polarization --- theoretical approaches --- Stark effects --- Gailitis resonance --- LENR --- muon catalyzed fusion --- free–free transitions --- opacity
Choose an application
Positrons can be used to study metallic defects. Positron annihilation experiments have been carried out to identify the defects in complex oxides. Positrons have also been used to study the Bose–Einstein condensation (BEC). Ps-BEC can be used to measure antigravity using atomic interferometers. This Special Issue hopes to bring awareness of the various aspects of positron interactions to the larger physics communities. We invite authors to submit articles from all areas of physics.
photoionization --- photoabsorption --- photodetachment --- positronium negative ion --- Feshbach and shape resonance states --- correlated exponential wave functions --- complex-coordinate rotation method --- positron-impact excitation --- variational polarized orbital method --- Born approximation --- Coulomb-dipole theory --- positron vs. electron impact ionization --- antihydrogen --- radiative attachment --- antihydrogen ion --- analytical --- hydrogen ion --- solar flares --- coronal mass ejections --- shocks --- positrons --- positronium --- positron annihilation --- pion decay --- autoionization states --- doubly excited states --- Feshbach states --- resonances --- shape resonances --- electron-impact ionization --- hydrogen --- positron-impact ionization --- velocity field --- vortices --- Electron-Positron Scatterings --- atoms and molecules --- cross sections and spin polarization --- theoretical approaches --- Stark effects --- Gailitis resonance --- LENR --- muon catalyzed fusion --- free–free transitions --- opacity
Choose an application
The interaction of ionising radiation with atomic and/or molecular ions is a fundamental process in nature, with implications for the understanding of many laboratory and astrophysical plasmas. At short wavelengths, the photon–ion interactions lead to inner-shell and multiple electron excitations, leading to demands on appropriate laboratory developments of sources and detectors and requiring advanced theoretical treatments which take into account many-body electron-correlation effects. This book includes a range of papers based on different short wavelength photon sources including recent facility and instrumental developments. Topics include experimental photoabsorption studies with laser-produced plasmas and photoionization of atomic and molecular ions with synchrotron and FEL sources, including modifications of a cylindrical mirror analyzer for high efficiency photoelectron spectroscopy on ion beams. Theoretical investigations include the effects of FEL fluctuations on autoionization line shapes, multiple sequential ionization by intense fs XUV pulses, photoelectron angular distributions for non-resonant two-photon ionization, inner-shell photodetachment of Na- and spin-polarized fluxes from fullerene anions.
2s2p --- Lithium-ion --- auto-ionization --- free electron laser --- stochastic average --- time dependent density matrix --- photoionization --- multiple ionization --- many-electron processes --- absolute cross sections --- synchrotron radiation --- collisional-radiative model --- laser-produced plasma, ion distribution --- ionization bottleneck --- radiative recombination --- collisional ioniztion --- three-body recombination --- nonlinear photoionization --- nonlinear interaction --- Cooper minimum --- angular distributions --- atomic ions --- dual-laser plasma technique --- photodetachment --- inner-shell phenomena --- electron spectroscopy --- ion beam --- spin-polarization --- fullerene anions --- endohedral fullerene anions --- NH+ --- molecular ion --- K-shell --- merged-beam --- Pb-Sn alloys --- EUV emission of high Z materials --- collisional radiative model --- Cowan suite of Codes --- ions --- free-electron laser --- krypton --- femtosecond pulses --- photoelectron spectroscopy --- atomic data --- inner-shell photoionization --- atomic nitrogen ion --- n/a
Choose an application
Positrons can be used to study metallic defects. Positron annihilation experiments have been carried out to identify the defects in complex oxides. Positrons have also been used to study the Bose–Einstein condensation (BEC). Ps-BEC can be used to measure antigravity using atomic interferometers. This Special Issue hopes to bring awareness of the various aspects of positron interactions to the larger physics communities. We invite authors to submit articles from all areas of physics.
Research & information: general --- photoionization --- photoabsorption --- photodetachment --- positronium negative ion --- Feshbach and shape resonance states --- correlated exponential wave functions --- complex-coordinate rotation method --- positron-impact excitation --- variational polarized orbital method --- Born approximation --- Coulomb-dipole theory --- positron vs. electron impact ionization --- antihydrogen --- radiative attachment --- antihydrogen ion --- analytical --- hydrogen ion --- solar flares --- coronal mass ejections --- shocks --- positrons --- positronium --- positron annihilation --- pion decay --- autoionization states --- doubly excited states --- Feshbach states --- resonances --- shape resonances --- electron-impact ionization --- hydrogen --- positron-impact ionization --- velocity field --- vortices --- Electron-Positron Scatterings --- atoms and molecules --- cross sections and spin polarization --- theoretical approaches --- Stark effects --- Gailitis resonance --- LENR --- muon catalyzed fusion --- free–free transitions --- opacity
Choose an application
The interaction of ionising radiation with atomic and/or molecular ions is a fundamental process in nature, with implications for the understanding of many laboratory and astrophysical plasmas. At short wavelengths, the photon–ion interactions lead to inner-shell and multiple electron excitations, leading to demands on appropriate laboratory developments of sources and detectors and requiring advanced theoretical treatments which take into account many-body electron-correlation effects. This book includes a range of papers based on different short wavelength photon sources including recent facility and instrumental developments. Topics include experimental photoabsorption studies with laser-produced plasmas and photoionization of atomic and molecular ions with synchrotron and FEL sources, including modifications of a cylindrical mirror analyzer for high efficiency photoelectron spectroscopy on ion beams. Theoretical investigations include the effects of FEL fluctuations on autoionization line shapes, multiple sequential ionization by intense fs XUV pulses, photoelectron angular distributions for non-resonant two-photon ionization, inner-shell photodetachment of Na- and spin-polarized fluxes from fullerene anions.
Research & information: general --- 2s2p --- Lithium-ion --- auto-ionization --- free electron laser --- stochastic average --- time dependent density matrix --- photoionization --- multiple ionization --- many-electron processes --- absolute cross sections --- synchrotron radiation --- collisional-radiative model --- laser-produced plasma, ion distribution --- ionization bottleneck --- radiative recombination --- collisional ioniztion --- three-body recombination --- nonlinear photoionization --- nonlinear interaction --- Cooper minimum --- angular distributions --- atomic ions --- dual-laser plasma technique --- photodetachment --- inner-shell phenomena --- electron spectroscopy --- ion beam --- spin-polarization --- fullerene anions --- endohedral fullerene anions --- NH+ --- molecular ion --- K-shell --- merged-beam --- Pb-Sn alloys --- EUV emission of high Z materials --- collisional radiative model --- Cowan suite of Codes --- ions --- free-electron laser --- krypton --- femtosecond pulses --- photoelectron spectroscopy --- atomic data --- inner-shell photoionization --- atomic nitrogen ion --- n/a
Choose an application
The interaction of ionising radiation with atomic and/or molecular ions is a fundamental process in nature, with implications for the understanding of many laboratory and astrophysical plasmas. At short wavelengths, the photon–ion interactions lead to inner-shell and multiple electron excitations, leading to demands on appropriate laboratory developments of sources and detectors and requiring advanced theoretical treatments which take into account many-body electron-correlation effects. This book includes a range of papers based on different short wavelength photon sources including recent facility and instrumental developments. Topics include experimental photoabsorption studies with laser-produced plasmas and photoionization of atomic and molecular ions with synchrotron and FEL sources, including modifications of a cylindrical mirror analyzer for high efficiency photoelectron spectroscopy on ion beams. Theoretical investigations include the effects of FEL fluctuations on autoionization line shapes, multiple sequential ionization by intense fs XUV pulses, photoelectron angular distributions for non-resonant two-photon ionization, inner-shell photodetachment of Na- and spin-polarized fluxes from fullerene anions.
Research & information: general --- 2s2p --- Lithium-ion --- auto-ionization --- free electron laser --- stochastic average --- time dependent density matrix --- photoionization --- multiple ionization --- many-electron processes --- absolute cross sections --- synchrotron radiation --- collisional-radiative model --- laser-produced plasma, ion distribution --- ionization bottleneck --- radiative recombination --- collisional ioniztion --- three-body recombination --- nonlinear photoionization --- nonlinear interaction --- Cooper minimum --- angular distributions --- atomic ions --- dual-laser plasma technique --- photodetachment --- inner-shell phenomena --- electron spectroscopy --- ion beam --- spin-polarization --- fullerene anions --- endohedral fullerene anions --- NH+ --- molecular ion --- K-shell --- merged-beam --- Pb-Sn alloys --- EUV emission of high Z materials --- collisional radiative model --- Cowan suite of Codes --- ions --- free-electron laser --- krypton --- femtosecond pulses --- photoelectron spectroscopy --- atomic data --- inner-shell photoionization --- atomic nitrogen ion
Listing 1 - 10 of 13 | << page >> |
Sort by
|