Listing 1 - 4 of 4 |
Sort by
|
Choose an application
In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue.
aluminum cast --- partial constraint --- n/a --- fatigue criterion --- thermo-mechanical fatigue --- stress relaxation aging behavior --- stainless steel --- constitutive models --- environmentally-assisted cracking --- initial stress levels --- slip system-based shear stresses --- thermomechanical fatigue --- activation volume --- engineering design --- pore distribution --- experimental set-ups --- tensile tests --- elevated temperature --- creep --- economy --- LCF --- fatigue strength --- hardening/softening --- hardness --- pore accumulation --- defects --- kinematic model --- Sanicro 25 --- probabilistic design --- AA7150-T7751 --- strain rate --- crack growth models --- bcc --- probabilistic Schmid factors --- isotropic model --- crack-tip cyclic plasticity --- anisotropy --- creep fatigue --- X-ray micro computer tomography --- temperature --- transient effects --- aluminum-silicon cylinder head --- spheroidal cast iron --- Probabilistic modeling --- pre-strain --- crack-tip blunting and sharpening --- high temperature steels --- lost foam --- thermal–mechanical fatigue --- cyclic plasticity --- flow stress --- Ni-base superalloy --- pure fatigue --- René80 --- polycrystalline FEA --- constitutive modelling --- thermal-mechanical fatigue --- René80
Choose an application
Very recently, a great deal of attention has been paid by researchers and technologists to trying to eliminate metal materials in the design of products and processes in favor of plastics and composites. After a few years, it is possible to state that metal materials are even more present in our lives and this is especially thanks to their ability to evolve. This Special Issue is focused on the recent evolution of metals and alloys with the scope of presenting the state of the art of solutions where metallic materials have become established, without a doubt, as a successful design solution thanks to their unique properties.
Technology: general issues --- material properties prediction --- experimental data analysis --- ductile/spheroidal cast iron (SGI) --- compact graphite cast iron (CGI) --- Machine Learning (RF) --- pattern recognition --- Random Forest (RF) --- Artificial Neural Network (NN) --- k-nearest neighbours (kNN) --- tribology --- wear --- slurry erosion --- coating --- cermet --- spheroidal graphite cast iron --- pack aluminizing --- microstructure --- high-temperature oxidation resistance --- hybrid composite --- wear performance --- ZA27 alloy --- deflection --- plates --- stiffeners --- numerical simulation --- Constructal Design --- austenitic stainless steel --- tensile properties --- artificial neural network --- MIV analysis --- pallet rack --- moment-rotation curve --- connection --- experiment --- numerical analysis --- thermomechanical processing --- grain growth --- forging --- retained austenite --- bainitic microstructure --- extended finite element method (xFEM) --- polarization curve --- long-term operated metals --- hybrid materials --- fatigue crack growth --- stress intensity factors (SIF) --- linear regression --- micromagnetic testing --- hardness --- case hardening depth --- phase-field modeling --- modified damage model --- large-strain plasticity --- S355J2+N steel --- ductile fracture --- two-stage yield function --- copper coatings --- pulsating current (PC) --- composite hardness models --- creep resistance --- n/a
Choose an application
Very recently, a great deal of attention has been paid by researchers and technologists to trying to eliminate metal materials in the design of products and processes in favor of plastics and composites. After a few years, it is possible to state that metal materials are even more present in our lives and this is especially thanks to their ability to evolve. This Special Issue is focused on the recent evolution of metals and alloys with the scope of presenting the state of the art of solutions where metallic materials have become established, without a doubt, as a successful design solution thanks to their unique properties.
material properties prediction --- experimental data analysis --- ductile/spheroidal cast iron (SGI) --- compact graphite cast iron (CGI) --- Machine Learning (RF) --- pattern recognition --- Random Forest (RF) --- Artificial Neural Network (NN) --- k-nearest neighbours (kNN) --- tribology --- wear --- slurry erosion --- coating --- cermet --- spheroidal graphite cast iron --- pack aluminizing --- microstructure --- high-temperature oxidation resistance --- hybrid composite --- wear performance --- ZA27 alloy --- deflection --- plates --- stiffeners --- numerical simulation --- Constructal Design --- austenitic stainless steel --- tensile properties --- artificial neural network --- MIV analysis --- pallet rack --- moment-rotation curve --- connection --- experiment --- numerical analysis --- thermomechanical processing --- grain growth --- forging --- retained austenite --- bainitic microstructure --- extended finite element method (xFEM) --- polarization curve --- long-term operated metals --- hybrid materials --- fatigue crack growth --- stress intensity factors (SIF) --- linear regression --- micromagnetic testing --- hardness --- case hardening depth --- phase-field modeling --- modified damage model --- large-strain plasticity --- S355J2+N steel --- ductile fracture --- two-stage yield function --- copper coatings --- pulsating current (PC) --- composite hardness models --- creep resistance --- n/a
Choose an application
Very recently, a great deal of attention has been paid by researchers and technologists to trying to eliminate metal materials in the design of products and processes in favor of plastics and composites. After a few years, it is possible to state that metal materials are even more present in our lives and this is especially thanks to their ability to evolve. This Special Issue is focused on the recent evolution of metals and alloys with the scope of presenting the state of the art of solutions where metallic materials have become established, without a doubt, as a successful design solution thanks to their unique properties.
Technology: general issues --- material properties prediction --- experimental data analysis --- ductile/spheroidal cast iron (SGI) --- compact graphite cast iron (CGI) --- Machine Learning (RF) --- pattern recognition --- Random Forest (RF) --- Artificial Neural Network (NN) --- k-nearest neighbours (kNN) --- tribology --- wear --- slurry erosion --- coating --- cermet --- spheroidal graphite cast iron --- pack aluminizing --- microstructure --- high-temperature oxidation resistance --- hybrid composite --- wear performance --- ZA27 alloy --- deflection --- plates --- stiffeners --- numerical simulation --- Constructal Design --- austenitic stainless steel --- tensile properties --- artificial neural network --- MIV analysis --- pallet rack --- moment-rotation curve --- connection --- experiment --- numerical analysis --- thermomechanical processing --- grain growth --- forging --- retained austenite --- bainitic microstructure --- extended finite element method (xFEM) --- polarization curve --- long-term operated metals --- hybrid materials --- fatigue crack growth --- stress intensity factors (SIF) --- linear regression --- micromagnetic testing --- hardness --- case hardening depth --- phase-field modeling --- modified damage model --- large-strain plasticity --- S355J2+N steel --- ductile fracture --- two-stage yield function --- copper coatings --- pulsating current (PC) --- composite hardness models --- creep resistance --- material properties prediction --- experimental data analysis --- ductile/spheroidal cast iron (SGI) --- compact graphite cast iron (CGI) --- Machine Learning (RF) --- pattern recognition --- Random Forest (RF) --- Artificial Neural Network (NN) --- k-nearest neighbours (kNN) --- tribology --- wear --- slurry erosion --- coating --- cermet --- spheroidal graphite cast iron --- pack aluminizing --- microstructure --- high-temperature oxidation resistance --- hybrid composite --- wear performance --- ZA27 alloy --- deflection --- plates --- stiffeners --- numerical simulation --- Constructal Design --- austenitic stainless steel --- tensile properties --- artificial neural network --- MIV analysis --- pallet rack --- moment-rotation curve --- connection --- experiment --- numerical analysis --- thermomechanical processing --- grain growth --- forging --- retained austenite --- bainitic microstructure --- extended finite element method (xFEM) --- polarization curve --- long-term operated metals --- hybrid materials --- fatigue crack growth --- stress intensity factors (SIF) --- linear regression --- micromagnetic testing --- hardness --- case hardening depth --- phase-field modeling --- modified damage model --- large-strain plasticity --- S355J2+N steel --- ductile fracture --- two-stage yield function --- copper coatings --- pulsating current (PC) --- composite hardness models --- creep resistance
Listing 1 - 4 of 4 |
Sort by
|