Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2021 (3)

2020 (1)

Listing 1 - 4 of 4
Sort by

Book
Metal Plasticity and Fatigue at High Temperature
Authors: --- ---
ISBN: 3039287710 3039287702 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue.


Book
Advances in Design by Metallic Materials: Synthesis, Characterization, Simulation and Applications
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Very recently, a great deal of attention has been paid by researchers and technologists to trying to eliminate metal materials in the design of products and processes in favor of plastics and composites. After a few years, it is possible to state that metal materials are even more present in our lives and this is especially thanks to their ability to evolve. This Special Issue is focused on the recent evolution of metals and alloys with the scope of presenting the state of the art of solutions where metallic materials have become established, without a doubt, as a successful design solution thanks to their unique properties.


Book
Advances in Design by Metallic Materials: Synthesis, Characterization, Simulation and Applications
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Very recently, a great deal of attention has been paid by researchers and technologists to trying to eliminate metal materials in the design of products and processes in favor of plastics and composites. After a few years, it is possible to state that metal materials are even more present in our lives and this is especially thanks to their ability to evolve. This Special Issue is focused on the recent evolution of metals and alloys with the scope of presenting the state of the art of solutions where metallic materials have become established, without a doubt, as a successful design solution thanks to their unique properties.


Book
Advances in Design by Metallic Materials: Synthesis, Characterization, Simulation and Applications
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Very recently, a great deal of attention has been paid by researchers and technologists to trying to eliminate metal materials in the design of products and processes in favor of plastics and composites. After a few years, it is possible to state that metal materials are even more present in our lives and this is especially thanks to their ability to evolve. This Special Issue is focused on the recent evolution of metals and alloys with the scope of presenting the state of the art of solutions where metallic materials have become established, without a doubt, as a successful design solution thanks to their unique properties.

Keywords

Technology: general issues --- material properties prediction --- experimental data analysis --- ductile/spheroidal cast iron (SGI) --- compact graphite cast iron (CGI) --- Machine Learning (RF) --- pattern recognition --- Random Forest (RF) --- Artificial Neural Network (NN) --- k-nearest neighbours (kNN) --- tribology --- wear --- slurry erosion --- coating --- cermet --- spheroidal graphite cast iron --- pack aluminizing --- microstructure --- high-temperature oxidation resistance --- hybrid composite --- wear performance --- ZA27 alloy --- deflection --- plates --- stiffeners --- numerical simulation --- Constructal Design --- austenitic stainless steel --- tensile properties --- artificial neural network --- MIV analysis --- pallet rack --- moment-rotation curve --- connection --- experiment --- numerical analysis --- thermomechanical processing --- grain growth --- forging --- retained austenite --- bainitic microstructure --- extended finite element method (xFEM) --- polarization curve --- long-term operated metals --- hybrid materials --- fatigue crack growth --- stress intensity factors (SIF) --- linear regression --- micromagnetic testing --- hardness --- case hardening depth --- phase-field modeling --- modified damage model --- large-strain plasticity --- S355J2+N steel --- ductile fracture --- two-stage yield function --- copper coatings --- pulsating current (PC) --- composite hardness models --- creep resistance --- material properties prediction --- experimental data analysis --- ductile/spheroidal cast iron (SGI) --- compact graphite cast iron (CGI) --- Machine Learning (RF) --- pattern recognition --- Random Forest (RF) --- Artificial Neural Network (NN) --- k-nearest neighbours (kNN) --- tribology --- wear --- slurry erosion --- coating --- cermet --- spheroidal graphite cast iron --- pack aluminizing --- microstructure --- high-temperature oxidation resistance --- hybrid composite --- wear performance --- ZA27 alloy --- deflection --- plates --- stiffeners --- numerical simulation --- Constructal Design --- austenitic stainless steel --- tensile properties --- artificial neural network --- MIV analysis --- pallet rack --- moment-rotation curve --- connection --- experiment --- numerical analysis --- thermomechanical processing --- grain growth --- forging --- retained austenite --- bainitic microstructure --- extended finite element method (xFEM) --- polarization curve --- long-term operated metals --- hybrid materials --- fatigue crack growth --- stress intensity factors (SIF) --- linear regression --- micromagnetic testing --- hardness --- case hardening depth --- phase-field modeling --- modified damage model --- large-strain plasticity --- S355J2+N steel --- ductile fracture --- two-stage yield function --- copper coatings --- pulsating current (PC) --- composite hardness models --- creep resistance

Listing 1 - 4 of 4
Sort by