Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The global biodiversity and climate emergencies demand transformative changes to human activities. For example, food production relies on synthetic, industrial and non-sustainable products for managing pests, weeds and diseases of crops. Sustainable farming requires approaches to managing these agricultural constraints that are more environmentally benign and work with rather than against nature. Increasing pressure on synthetic products has reinvigorated efforts to identify alternative pest management options, including plant-based solutions that are environmentally benign and can be tailored to different farmers’ needs, from commercial to small holder and subsistence farming. Botanical insecticides and pesticidal plants can offer a novel, effective and more sustainable alternative to synthetic products for controlling pests, diseases and weeds. This Special Issue reviews and reports the latest developments in plant-based pesticides from identification of bioactive plant chemicals, mechanisms of activity and validation of their use in horticulture and disease vector control. Other work reports applications in rice weeds, combination biopesticides and how chemistry varies spatially and influences the effectiveness of botanicals in different locations. Three reviews assess wider questions around the potential of plant-based pest management to address the global challenges of new, invasive and established crop pests and as-yet underexploited pesticidal plants.
antifeedant --- encapsulation --- induced systemic response --- corn --- barnyard grass --- rutin --- deguelin --- botanical pesticides --- insect behavior --- organic farming --- aphids --- leaf disc assay --- Melia volkensii --- rotenoids --- botanicals --- entomopathogenic fungi --- anise --- oil emulsion entrapment --- integrated pest management --- sesquiterpene --- botanical pesticide --- pest management --- neem --- insecticidal activity --- insect pest --- insects --- resistance --- biopesticide --- Tetranychus urticae --- karanja --- Colorado potato beetle --- essential oils --- Y-tube olfactometer --- parasitoid --- pests --- chemotype 3 --- limonoid --- prospects --- pyrethrum --- botanical insecticides --- weed control --- cover crops --- agro-ecological intensification --- spatial-temporal variation --- survival analysis --- Senecio fistulosus --- organic pesticide --- synergism --- growth inhibitor --- biopesticides --- tryptophan --- acaricide --- pyrrolizidine alkaloid --- phytotoxic activity --- phenylalanine --- rice --- Meliaceae --- invasive species --- botanical active substances --- structure-activity relationships --- pesticidal plant --- fennel --- spray drying --- foliar fertiliser --- sustainable agriculture --- Italian ryegrass
Choose an application
This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools.
Research & information: general --- bfast --- Mann–Kendall --- Sen’s slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- Mann-Kendall --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR --- n/a --- Sen's slope
Choose an application
This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools.
bfast --- Mann–Kendall --- Sen’s slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- Mann-Kendall --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR --- n/a --- Sen's slope
Choose an application
This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools.
Research & information: general --- bfast --- Mann-Kendall --- Sen's slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR
Listing 1 - 4 of 4 |
Sort by
|