Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2021 (3)

Listing 1 - 3 of 3
Sort by

Book
Biocatalytic Process Optimization
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biocatalysis is very appealing to the industry because it allows, in principle, the synthesis of products not accessible by chemical synthesis. Enzymes are very effective, as are precise biocatalysts, as they are enantioselective, with mild reaction conditions and green chemistry. Biocatalysis is currently widely used in the pharmaceutical industry, food industry, cosmetic industry, and textile industry. This includes enzyme production, biocatalytic process development, biotransformation, enzyme engineering, immobilization, the synthesis of fine chemicals and the recycling of biocatalysts. One of the most challenging problems in biocatalysis applications is process optimization. This Special Issue shows that an optimized biocatalysis process can provide an environmentally friendly, clean, highly efficient, low cost, and renewable process for the synthesis and production of valuable products. With further development and improvements, more biocatalysis processes may be applied in the future.

Keywords

Research & information: general --- catechin --- degalloylation --- flavonol --- glycoside hydrolase --- optimization --- tannase --- immobilized DERA --- statin side chain --- continuous flow synthesis --- alginate-luffa matrix --- design of experiments --- Anguilla marmorata --- eel protein hydrolysates --- functional properties --- herbal eel extracts --- agarose --- agarase --- agarotriose --- agaropentaose --- expression --- calycosin --- calycosin-7-O-β-D-glucoside --- glucosyltransferase --- sucrose synthase --- UDP-glucose recycle --- UGT–SuSy cascade reaction --- Candida antarctica lipase A --- surface-display system --- shear rate --- mass transfer rate --- enzymatic kinetic study --- enzymatic synthesis --- β-amino acid esters --- microreactor --- aromatic amines --- Michael addition --- kraft pulp --- cellulose --- xylan --- enzymatic hydrolysis --- Penicillium verruculosum --- glucose --- xylose --- lipase --- acidolysis --- docosahexaenoic acid ethyl ester --- eicosapentaenoic acid ethyl ester --- ethyl acetate --- kinetics --- styrene monooxygenase --- indole monooxygenase --- two-component system --- chiral biocatalyst --- solvent tolerance --- biotransformation --- epoxidation --- NAD(P)H-mimics --- superoxide dismutase (SOD) --- catalase (CAT) --- glutathione reductase (GR) --- aluminum (Al) --- selenium (Se) --- mouse --- brain --- liver --- phosphatidylcholine --- 3,4-dimethoxycinnamic acid --- enzymatic interesterification --- biocatalysis --- Pleurotus ostreatus --- enenzymatic hydrolysis --- peptide --- antioxidant --- hepatoprotective activity --- Yarrowia lipolytica --- whole–cell biocatalysis --- indolizine --- cycloaddition --- trehalose --- viscosity --- enzymes --- protein dynamics --- Kramers’ theory --- protein stabilization --- enzyme inhibition --- Lipase --- transesterification --- 2-phenylethyl acetate --- packed-bed reactor --- solvent-free --- cyclic voltammetry --- electrochemical impedance spectroscopy --- carbon nanotubes --- redox mediators --- CYP102A1 --- naringin dihydrochalcone --- neoeriocitrin dihydrochalcone --- regioselective hydroxylation --- n/a --- UGT-SuSy cascade reaction --- whole-cell biocatalysis --- Kramers' theory


Book
Biocatalytic Process Optimization
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biocatalysis is very appealing to the industry because it allows, in principle, the synthesis of products not accessible by chemical synthesis. Enzymes are very effective, as are precise biocatalysts, as they are enantioselective, with mild reaction conditions and green chemistry. Biocatalysis is currently widely used in the pharmaceutical industry, food industry, cosmetic industry, and textile industry. This includes enzyme production, biocatalytic process development, biotransformation, enzyme engineering, immobilization, the synthesis of fine chemicals and the recycling of biocatalysts. One of the most challenging problems in biocatalysis applications is process optimization. This Special Issue shows that an optimized biocatalysis process can provide an environmentally friendly, clean, highly efficient, low cost, and renewable process for the synthesis and production of valuable products. With further development and improvements, more biocatalysis processes may be applied in the future.

Keywords

Research & information: general --- catechin --- degalloylation --- flavonol --- glycoside hydrolase --- optimization --- tannase --- immobilized DERA --- statin side chain --- continuous flow synthesis --- alginate-luffa matrix --- design of experiments --- Anguilla marmorata --- eel protein hydrolysates --- functional properties --- herbal eel extracts --- agarose --- agarase --- agarotriose --- agaropentaose --- expression --- calycosin --- calycosin-7-O-β-D-glucoside --- glucosyltransferase --- sucrose synthase --- UDP-glucose recycle --- UGT–SuSy cascade reaction --- Candida antarctica lipase A --- surface-display system --- shear rate --- mass transfer rate --- enzymatic kinetic study --- enzymatic synthesis --- β-amino acid esters --- microreactor --- aromatic amines --- Michael addition --- kraft pulp --- cellulose --- xylan --- enzymatic hydrolysis --- Penicillium verruculosum --- glucose --- xylose --- lipase --- acidolysis --- docosahexaenoic acid ethyl ester --- eicosapentaenoic acid ethyl ester --- ethyl acetate --- kinetics --- styrene monooxygenase --- indole monooxygenase --- two-component system --- chiral biocatalyst --- solvent tolerance --- biotransformation --- epoxidation --- NAD(P)H-mimics --- superoxide dismutase (SOD) --- catalase (CAT) --- glutathione reductase (GR) --- aluminum (Al) --- selenium (Se) --- mouse --- brain --- liver --- phosphatidylcholine --- 3,4-dimethoxycinnamic acid --- enzymatic interesterification --- biocatalysis --- Pleurotus ostreatus --- enenzymatic hydrolysis --- peptide --- antioxidant --- hepatoprotective activity --- Yarrowia lipolytica --- whole–cell biocatalysis --- indolizine --- cycloaddition --- trehalose --- viscosity --- enzymes --- protein dynamics --- Kramers’ theory --- protein stabilization --- enzyme inhibition --- Lipase --- transesterification --- 2-phenylethyl acetate --- packed-bed reactor --- solvent-free --- cyclic voltammetry --- electrochemical impedance spectroscopy --- carbon nanotubes --- redox mediators --- CYP102A1 --- naringin dihydrochalcone --- neoeriocitrin dihydrochalcone --- regioselective hydroxylation --- n/a --- UGT-SuSy cascade reaction --- whole-cell biocatalysis --- Kramers' theory


Book
Biocatalytic Process Optimization
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biocatalysis is very appealing to the industry because it allows, in principle, the synthesis of products not accessible by chemical synthesis. Enzymes are very effective, as are precise biocatalysts, as they are enantioselective, with mild reaction conditions and green chemistry. Biocatalysis is currently widely used in the pharmaceutical industry, food industry, cosmetic industry, and textile industry. This includes enzyme production, biocatalytic process development, biotransformation, enzyme engineering, immobilization, the synthesis of fine chemicals and the recycling of biocatalysts. One of the most challenging problems in biocatalysis applications is process optimization. This Special Issue shows that an optimized biocatalysis process can provide an environmentally friendly, clean, highly efficient, low cost, and renewable process for the synthesis and production of valuable products. With further development and improvements, more biocatalysis processes may be applied in the future.

Keywords

catechin --- degalloylation --- flavonol --- glycoside hydrolase --- optimization --- tannase --- immobilized DERA --- statin side chain --- continuous flow synthesis --- alginate-luffa matrix --- design of experiments --- Anguilla marmorata --- eel protein hydrolysates --- functional properties --- herbal eel extracts --- agarose --- agarase --- agarotriose --- agaropentaose --- expression --- calycosin --- calycosin-7-O-β-D-glucoside --- glucosyltransferase --- sucrose synthase --- UDP-glucose recycle --- UGT–SuSy cascade reaction --- Candida antarctica lipase A --- surface-display system --- shear rate --- mass transfer rate --- enzymatic kinetic study --- enzymatic synthesis --- β-amino acid esters --- microreactor --- aromatic amines --- Michael addition --- kraft pulp --- cellulose --- xylan --- enzymatic hydrolysis --- Penicillium verruculosum --- glucose --- xylose --- lipase --- acidolysis --- docosahexaenoic acid ethyl ester --- eicosapentaenoic acid ethyl ester --- ethyl acetate --- kinetics --- styrene monooxygenase --- indole monooxygenase --- two-component system --- chiral biocatalyst --- solvent tolerance --- biotransformation --- epoxidation --- NAD(P)H-mimics --- superoxide dismutase (SOD) --- catalase (CAT) --- glutathione reductase (GR) --- aluminum (Al) --- selenium (Se) --- mouse --- brain --- liver --- phosphatidylcholine --- 3,4-dimethoxycinnamic acid --- enzymatic interesterification --- biocatalysis --- Pleurotus ostreatus --- enenzymatic hydrolysis --- peptide --- antioxidant --- hepatoprotective activity --- Yarrowia lipolytica --- whole–cell biocatalysis --- indolizine --- cycloaddition --- trehalose --- viscosity --- enzymes --- protein dynamics --- Kramers’ theory --- protein stabilization --- enzyme inhibition --- Lipase --- transesterification --- 2-phenylethyl acetate --- packed-bed reactor --- solvent-free --- cyclic voltammetry --- electrochemical impedance spectroscopy --- carbon nanotubes --- redox mediators --- CYP102A1 --- naringin dihydrochalcone --- neoeriocitrin dihydrochalcone --- regioselective hydroxylation --- n/a --- UGT-SuSy cascade reaction --- whole-cell biocatalysis --- Kramers' theory

Listing 1 - 3 of 3
Sort by