Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (6)

German (1)


Year
From To Submit

2021 (3)

2020 (3)

2016 (1)

Listing 1 - 7 of 7
Sort by

Book
Flüssigprozessierung von Multischicht-OLEDs aus kleinen Molekülen
Author:
ISBN: 1000051513 3731504693 Year: 2016 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Organic light-emitting diodes consist of several layers of organic molecules just a few nanometers thick. In future, it may become possible to change the manufacturing process from vacuum deposition to a cost-effective liquid processing. This theoretical and practical investigation focuses on the underlying processes, in particular coating and drying, as well as the factors influencing the separation of individual layers in multilayer systems consisting of small molecules.


Book
Advances and Challenges in Organic Electronics
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Organic Electronics is a rapidly evolving multidisciplinary research field at the interface between Organic Chemistry and Physics. Organic Electronics is based on the use of the unique optical and electrical properties of π-conjugated materials that range from small molecules to polymers. The wide activity of researchers in Organic Electronics is testament to the fact that its potential is huge and its list of potential applications almost endless. Application of these electronic and optoelectronic devices range from Organic Field Effect Transistors (OFETs) to Organic Light Emitting Diodes (OLEDs) and Organic Solar Cells (OSCs), sensors, etc. We invited a series of colleagues to contribute to this Special Issue with respect to the aforementioned concepts and keywords. The goal for this Special Issue was to describe the recent developments of this rapidly advancing interdisciplinary research field. We thank all authors for their contributions.

Keywords

Technology: general issues --- fluorene --- nitrofluorene --- Knoevenagel reaction --- near infrared absorption --- push–pull chromophore --- poly(nitro)fluorene --- organic tandem solar cell --- 3D nano-ripple pattern --- ZnO sol-gel --- charge recombination layer --- low temperature solution process --- on-surface reaction --- stepwise growth --- sequential growth --- hierarchical growth --- macromolecular organic structures --- surface covalent organic framework --- nanoribbons --- macrocycles --- coordination polymers --- silicon phthalocyanines --- n-type organic semiconductors --- organic thin-film transistors --- push-pull dyes --- chromophore --- naphthalene --- solvatochromism --- DFT --- fullerene derivative --- P3HT --- polymer solar cell --- QSPR --- TD-DFT --- fluorene --- nitrofluorene --- Knoevenagel reaction --- near infrared absorption --- push–pull chromophore --- poly(nitro)fluorene --- organic tandem solar cell --- 3D nano-ripple pattern --- ZnO sol-gel --- charge recombination layer --- low temperature solution process --- on-surface reaction --- stepwise growth --- sequential growth --- hierarchical growth --- macromolecular organic structures --- surface covalent organic framework --- nanoribbons --- macrocycles --- coordination polymers --- silicon phthalocyanines --- n-type organic semiconductors --- organic thin-film transistors --- push-pull dyes --- chromophore --- naphthalene --- solvatochromism --- DFT --- fullerene derivative --- P3HT --- polymer solar cell --- QSPR --- TD-DFT


Book
Advances and Challenges in Organic Electronics
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Organic Electronics is a rapidly evolving multidisciplinary research field at the interface between Organic Chemistry and Physics. Organic Electronics is based on the use of the unique optical and electrical properties of π-conjugated materials that range from small molecules to polymers. The wide activity of researchers in Organic Electronics is testament to the fact that its potential is huge and its list of potential applications almost endless. Application of these electronic and optoelectronic devices range from Organic Field Effect Transistors (OFETs) to Organic Light Emitting Diodes (OLEDs) and Organic Solar Cells (OSCs), sensors, etc. We invited a series of colleagues to contribute to this Special Issue with respect to the aforementioned concepts and keywords. The goal for this Special Issue was to describe the recent developments of this rapidly advancing interdisciplinary research field. We thank all authors for their contributions.


Book
Advances and Challenges in Organic Electronics
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Organic Electronics is a rapidly evolving multidisciplinary research field at the interface between Organic Chemistry and Physics. Organic Electronics is based on the use of the unique optical and electrical properties of π-conjugated materials that range from small molecules to polymers. The wide activity of researchers in Organic Electronics is testament to the fact that its potential is huge and its list of potential applications almost endless. Application of these electronic and optoelectronic devices range from Organic Field Effect Transistors (OFETs) to Organic Light Emitting Diodes (OLEDs) and Organic Solar Cells (OSCs), sensors, etc. We invited a series of colleagues to contribute to this Special Issue with respect to the aforementioned concepts and keywords. The goal for this Special Issue was to describe the recent developments of this rapidly advancing interdisciplinary research field. We thank all authors for their contributions.


Book
Advanced Thin Film Materials for Photovoltaic Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The direct conversion of sunlight into electricity (photovoltaic or PV for short) is evolving rapidly, and is a technology becoming a mainstream clean energy production method. However, to compete with conventional energy production methods using fossil fuels, the conversion efficiency needs to be increased, and the manufacturing cost should be reduced further. Both of these require the improvement of solar energy materials, and the device architectures used for the conversion of light into electrical energy. This Special Issue presents the latest developments in some solar energy materials like Si, CdTe, CIGS, SnS and Perovskites), and the device structures suitable for next generation solar cells. In particular, the progress in graded bandgap multi-layer solar cells are presented in this Special Issue.


Book
Advanced Thin Film Materials for Photovoltaic Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The direct conversion of sunlight into electricity (photovoltaic or PV for short) is evolving rapidly, and is a technology becoming a mainstream clean energy production method. However, to compete with conventional energy production methods using fossil fuels, the conversion efficiency needs to be increased, and the manufacturing cost should be reduced further. Both of these require the improvement of solar energy materials, and the device architectures used for the conversion of light into electrical energy. This Special Issue presents the latest developments in some solar energy materials like Si, CdTe, CIGS, SnS and Perovskites), and the device structures suitable for next generation solar cells. In particular, the progress in graded bandgap multi-layer solar cells are presented in this Special Issue.


Book
Advanced Thin Film Materials for Photovoltaic Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The direct conversion of sunlight into electricity (photovoltaic or PV for short) is evolving rapidly, and is a technology becoming a mainstream clean energy production method. However, to compete with conventional energy production methods using fossil fuels, the conversion efficiency needs to be increased, and the manufacturing cost should be reduced further. Both of these require the improvement of solar energy materials, and the device architectures used for the conversion of light into electrical energy. This Special Issue presents the latest developments in some solar energy materials like Si, CdTe, CIGS, SnS and Perovskites), and the device structures suitable for next generation solar cells. In particular, the progress in graded bandgap multi-layer solar cells are presented in this Special Issue.

Keywords

History of engineering & technology --- electroplating --- semiconductors --- large-area electronics --- characterisation --- solar cells --- perovskite solar cell --- hole blocking layer --- solution spin-coating --- TiO2/SnO2 layer --- anti-reflection coating --- potential-induced degradation --- solar cell --- plasma enhanced chemical vapor deposition --- organic solar cells --- perovskite solar cells --- encapsulation --- stability --- Cu(In,Ga)Se2 --- mini-module --- numerical simulation --- P1 shunt --- space charge region (SCR) --- TCAD --- transistor effect --- electrodeposition --- CdTe film --- two-electrode configuration --- thin films --- electroplating temperature --- photovoltaic --- CdTe --- CdS --- luminescence --- spectroscopy --- CdSe --- CdTe1−xSex --- photovoltaics --- review --- tin monosulfide --- tin disulfide --- chemical solution process --- absorber --- buffer --- renewable energy --- ethlammonium --- formamidinium --- microstructure --- perovskite --- SnS/SnS2 --- CdS/CdTe --- CIGS --- silicon --- electroplating of semiconductors --- electroplating --- semiconductors --- large-area electronics --- characterisation --- solar cells --- perovskite solar cell --- hole blocking layer --- solution spin-coating --- TiO2/SnO2 layer --- anti-reflection coating --- potential-induced degradation --- solar cell --- plasma enhanced chemical vapor deposition --- organic solar cells --- perovskite solar cells --- encapsulation --- stability --- Cu(In,Ga)Se2 --- mini-module --- numerical simulation --- P1 shunt --- space charge region (SCR) --- TCAD --- transistor effect --- electrodeposition --- CdTe film --- two-electrode configuration --- thin films --- electroplating temperature --- photovoltaic --- CdTe --- CdS --- luminescence --- spectroscopy --- CdSe --- CdTe1−xSex --- photovoltaics --- review --- tin monosulfide --- tin disulfide --- chemical solution process --- absorber --- buffer --- renewable energy --- ethlammonium --- formamidinium --- microstructure --- perovskite --- SnS/SnS2 --- CdS/CdTe --- CIGS --- silicon --- electroplating of semiconductors

Listing 1 - 7 of 7
Sort by