Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

Vlaams Parlement (3)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2021 (3)

Listing 1 - 6 of 6
Sort by

Book
On the Electro-Chemo-Mechanical Coupling in Solid State Batteries and its Impact on Morphological Interface Stability
Author:
ISBN: 1000123310 3731510472 Year: 2021 Publisher: Karlsruhe KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Solid state batteries with a lithium metal electrode are considered the next generation of high energy battery technology. Unfortunately, lithium metal is prone to harmful protrusion or dendrite growth which causes dangerous cell failure. Within this work the problem of protrusion growth is tackled by deriving a novel electro-chemo-mechanical theory tailored for binary solid state batteries which is then used to discuss the impact of mechanics on interface stability by numerical studies.


Book
Composite Electrolyte & Electrode Membranes for Electrochemical Energy Storage & Conversion Devices
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electrochemical energy systems can successfully exploit beneficial characteristics of electrolyte and/or electrode membranes due to their intriguing peculiarities that make them well-established, standard components in devices such as fuel cells, electrolyzers, and flow batteries. Therefore, more and more researchers are attracted by these challenging yet important issues regarding the performance and behavior of the final device. This Special Issue of Membranes offers scientists and readers involved in these topics an appealing forum to bring and summarize the forthcoming Research & Development results, which stipulates that the composite electrolyte/electrode membranes should be tailored for lithium batteries and fuel cells. Various key aspects, such as synthesis/preparation of materials/components, investigation of the physicochemical and electrochemical properties, understanding of phenomena within the materials and electrolyte/electrode interface, and device manufacturing and performance, were presented and discussed using key research teams from internationally recognized experts in these fields.


Book
A Themed Issue Dedicated to Professor John B. Goodenough on the Occasion of His 100th Birthday Anniversary
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book of Molecules is dedicated to Professor John B. Goodenough (born July 25, 1922, Jena, Germany), an American physicist, who won the 2019 Nobel Prize for Chemistry for his work on developing lithium-ion batteries.

Keywords

Research & information: general --- Chemistry --- Physical chemistry --- structure --- bonding --- physical properties --- collective or localized electrons --- exchange integral --- p-magnetism --- boron sub-oxide --- interstitial atoms --- DFT --- DOS --- ELF --- charge density plots --- bifunctional catalyst --- hybrid catalyst --- oxygen reduction reaction --- oxygen evolution reaction --- four-electron pathway --- lithium ionic conductor --- perovskite structure --- solid electrolyte --- oxide --- lithium-sulfur batteries --- tungsten oxide nanowire --- interlayer --- thiosulfate mediator --- Keywords: spin exchange --- magnetic orbitals --- ligand p-orbital tails --- M-L-M exchange --- M-L...L-M exchange --- α-CuV2O6 --- LiCuVO4 --- (CuCl)LaNb2O7 --- Cu3(CO3)2(OH)2 --- spin Hamiltonian --- magnetism --- energy-mapping analysis --- four-state method --- Green's function method --- magnetic ground state --- spin exchange --- magnetic anisotropy --- molecular anion --- MPS3 --- qualitative rules --- batteries --- positive electrode --- vanadium phosphates --- covalent vanadyl bond --- mixed anion --- density functional theory --- quantum Monte Carlo --- fast Li+ ion conductor --- Li-ion battery --- spinel --- solid-state battery --- cathode-electrolyte interface --- indigo carmine --- solid polymer electrolyte --- solid state battery --- LMP® technology --- organic battery --- layered oxide cathodes --- alkali-alkali interactions --- electronic structure --- Li diffusion --- defect engineering --- perovskite electrolyte --- lithium-ion battery --- migration pathway --- anisotropic response --- cathode --- polyanion --- high-voltage --- structure --- bonding --- physical properties --- collective or localized electrons --- exchange integral --- p-magnetism --- boron sub-oxide --- interstitial atoms --- DFT --- DOS --- ELF --- charge density plots --- bifunctional catalyst --- hybrid catalyst --- oxygen reduction reaction --- oxygen evolution reaction --- four-electron pathway --- lithium ionic conductor --- perovskite structure --- solid electrolyte --- oxide --- lithium-sulfur batteries --- tungsten oxide nanowire --- interlayer --- thiosulfate mediator --- Keywords: spin exchange --- magnetic orbitals --- ligand p-orbital tails --- M-L-M exchange --- M-L...L-M exchange --- α-CuV2O6 --- LiCuVO4 --- (CuCl)LaNb2O7 --- Cu3(CO3)2(OH)2 --- spin Hamiltonian --- magnetism --- energy-mapping analysis --- four-state method --- Green's function method --- magnetic ground state --- spin exchange --- magnetic anisotropy --- molecular anion --- MPS3 --- qualitative rules --- batteries --- positive electrode --- vanadium phosphates --- covalent vanadyl bond --- mixed anion --- density functional theory --- quantum Monte Carlo --- fast Li+ ion conductor --- Li-ion battery --- spinel --- solid-state battery --- cathode-electrolyte interface --- indigo carmine --- solid polymer electrolyte --- solid state battery --- LMP® technology --- organic battery --- layered oxide cathodes --- alkali-alkali interactions --- electronic structure --- Li diffusion --- defect engineering --- perovskite electrolyte --- lithium-ion battery --- migration pathway --- anisotropic response --- cathode --- polyanion --- high-voltage


Book
A Themed Issue Dedicated to Professor John B. Goodenough on the Occasion of His 100th Birthday Anniversary
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book of Molecules is dedicated to Professor John B. Goodenough (born July 25, 1922, Jena, Germany), an American physicist, who won the 2019 Nobel Prize for Chemistry for his work on developing lithium-ion batteries.

Keywords

Research & information: general --- Chemistry --- Physical chemistry --- structure --- bonding --- physical properties --- collective or localized electrons --- exchange integral --- p-magnetism --- boron sub-oxide --- interstitial atoms --- DFT --- DOS --- ELF --- charge density plots --- bifunctional catalyst --- hybrid catalyst --- oxygen reduction reaction --- oxygen evolution reaction --- four-electron pathway --- lithium ionic conductor --- perovskite structure --- solid electrolyte --- oxide --- lithium-sulfur batteries --- tungsten oxide nanowire --- interlayer --- thiosulfate mediator --- Keywords: spin exchange --- magnetic orbitals --- ligand p-orbital tails --- M–L–M exchange --- M–L…L–M exchange --- α-CuV2O6 --- LiCuVO4 --- (CuCl)LaNb2O7 --- Cu3(CO3)2(OH)2 --- spin Hamiltonian --- magnetism --- energy-mapping analysis --- four-state method --- Green’s function method --- magnetic ground state --- spin exchange --- magnetic anisotropy --- molecular anion --- MPS3 --- qualitative rules --- batteries --- positive electrode --- vanadium phosphates --- covalent vanadyl bond --- mixed anion --- density functional theory --- quantum Monte Carlo --- fast Li+ ion conductor --- Li-ion battery --- spinel --- solid-state battery --- cathode-electrolyte interface --- indigo carmine --- solid polymer electrolyte --- solid state battery --- LMP® technology --- organic battery --- layered oxide cathodes --- alkali–alkali interactions --- electronic structure --- Li diffusion --- defect engineering --- perovskite electrolyte --- lithium-ion battery --- migration pathway --- anisotropic response --- cathode --- polyanion --- high-voltage --- n/a --- M-L-M exchange --- M-L...L-M exchange --- Green's function method --- alkali-alkali interactions


Book
A Themed Issue Dedicated to Professor John B. Goodenough on the Occasion of His 100th Birthday Anniversary
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book of Molecules is dedicated to Professor John B. Goodenough (born July 25, 1922, Jena, Germany), an American physicist, who won the 2019 Nobel Prize for Chemistry for his work on developing lithium-ion batteries.

Keywords

structure --- bonding --- physical properties --- collective or localized electrons --- exchange integral --- p-magnetism --- boron sub-oxide --- interstitial atoms --- DFT --- DOS --- ELF --- charge density plots --- bifunctional catalyst --- hybrid catalyst --- oxygen reduction reaction --- oxygen evolution reaction --- four-electron pathway --- lithium ionic conductor --- perovskite structure --- solid electrolyte --- oxide --- lithium-sulfur batteries --- tungsten oxide nanowire --- interlayer --- thiosulfate mediator --- Keywords: spin exchange --- magnetic orbitals --- ligand p-orbital tails --- M–L–M exchange --- M–L…L–M exchange --- α-CuV2O6 --- LiCuVO4 --- (CuCl)LaNb2O7 --- Cu3(CO3)2(OH)2 --- spin Hamiltonian --- magnetism --- energy-mapping analysis --- four-state method --- Green’s function method --- magnetic ground state --- spin exchange --- magnetic anisotropy --- molecular anion --- MPS3 --- qualitative rules --- batteries --- positive electrode --- vanadium phosphates --- covalent vanadyl bond --- mixed anion --- density functional theory --- quantum Monte Carlo --- fast Li+ ion conductor --- Li-ion battery --- spinel --- solid-state battery --- cathode-electrolyte interface --- indigo carmine --- solid polymer electrolyte --- solid state battery --- LMP® technology --- organic battery --- layered oxide cathodes --- alkali–alkali interactions --- electronic structure --- Li diffusion --- defect engineering --- perovskite electrolyte --- lithium-ion battery --- migration pathway --- anisotropic response --- cathode --- polyanion --- high-voltage --- n/a --- M-L-M exchange --- M-L...L-M exchange --- Green's function method --- alkali-alkali interactions


Book
Composite Electrolyte & Electrode Membranes for Electrochemical Energy Storage & Conversion Devices
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electrochemical energy systems can successfully exploit beneficial characteristics of electrolyte and/or electrode membranes due to their intriguing peculiarities that make them well-established, standard components in devices such as fuel cells, electrolyzers, and flow batteries. Therefore, more and more researchers are attracted by these challenging yet important issues regarding the performance and behavior of the final device. This Special Issue of Membranes offers scientists and readers involved in these topics an appealing forum to bring and summarize the forthcoming Research & Development results, which stipulates that the composite electrolyte/electrode membranes should be tailored for lithium batteries and fuel cells. Various key aspects, such as synthesis/preparation of materials/components, investigation of the physicochemical and electrochemical properties, understanding of phenomena within the materials and electrolyte/electrode interface, and device manufacturing and performance, were presented and discussed using key research teams from internationally recognized experts in these fields.

Keywords

Research & information: general --- Technology: general issues --- ionic liquids --- N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide --- poly(ethyleneoxide) --- polymer electrolytes --- lithium polymer batteries --- PVDF --- copolymers --- battery separator --- lithium-ion batteries --- solid state battery --- thermoplastic polymer electrolyte --- ionic liquid --- sepiolite --- inorganic filler --- gel polymer electrolytes --- composites --- montmorillonite clays --- lithium batteries --- PFG-NMR --- self-diffusion coefficient --- blend polymers --- ion transport --- nuclear magnetic resonance (NMR) --- gel polymer electrolyte --- electrospinning --- gravure printing --- printed batteries --- printed cathode --- multilayer --- Nafion --- CaTiO3-δ --- composite electrolyte --- succinonitrile --- electrolyte --- lithium ion batteries --- composite fibers --- mixtures --- ionic liquids --- N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide --- poly(ethyleneoxide) --- polymer electrolytes --- lithium polymer batteries --- PVDF --- copolymers --- battery separator --- lithium-ion batteries --- solid state battery --- thermoplastic polymer electrolyte --- ionic liquid --- sepiolite --- inorganic filler --- gel polymer electrolytes --- composites --- montmorillonite clays --- lithium batteries --- PFG-NMR --- self-diffusion coefficient --- blend polymers --- ion transport --- nuclear magnetic resonance (NMR) --- gel polymer electrolyte --- electrospinning --- gravure printing --- printed batteries --- printed cathode --- multilayer --- Nafion --- CaTiO3-δ --- composite electrolyte --- succinonitrile --- electrolyte --- lithium ion batteries --- composite fibers --- mixtures

Listing 1 - 6 of 6
Sort by