Listing 1 - 4 of 4 |
Sort by
|
Choose an application
This book aims to contribute to the conceptual and practical knowledge pools in order to improve the research and practice on the sustainable development of smart cities by bringing an informed understanding of the subject to scholars, policymakers, and practitioners. This book seeks articles offering insights into the sustainable development of smart cities by providing in-depth conceptual analyses and detailed case study descriptions and empirical investigations. This way, the book will form a repository of relevant information, material, and knowledge to support research, policymaking, practice, and transferability of experiences to address aforementioned challenges. The scope of the book includes the following broad areas, with a particular focus on the approaches, advances, and applications in the sustainable development of smart cities: • Theoretical underpinnings and analytical and policy frameworks; • Methodological approaches for the evaluation of smart and sustainable cities; • Technological developments in the techno-enviro nexus; • Global best practice smart city case investigations and reports; • Geo-design and applications concerning desired urban outcomes; • Prospects, implications, and impacts concerning the future of smart and sustainable cities.
digital commons --- multi-agent systems --- knowledge-based urban development --- latecomer’s advantage --- sustainable development goals --- emirates --- heat mitigation --- optimal cities --- Brazil --- urban informatics --- low-carbon resources --- climate emergency --- smart governance --- climate change --- Shenzhen --- rentier state --- parametric optimisation --- disasters --- sensible heat flux --- user characteristics --- multi-energy networks --- sustainable city --- new public service --- Florianópolis --- sustainability --- innovation hub --- land cover ratio --- global warming --- energy autonomy --- visioning --- e-government --- in-situ validation --- smart cities --- sustainable smart city --- thermal environment improvement --- climate crisis --- urban health --- smart city --- economic resilience --- model predictive control --- mobility --- smart display --- reliability --- urban policy --- sustainable urban development --- commons --- spatial databases --- energy budget --- smart placemaking --- human–computer interaction --- living-lab --- Qatar --- Chinese cities --- media façade --- drinking water networks --- CO2 networks --- photovoltaics --- policy --- smart infrastructure --- economic cost --- spatial typification by heat flux --- renewable energy systems --- smart urban technology --- linear parameter varying --- intuitive interaction --- gamification --- urban branding --- knowledge and innovation economy --- city branding --- tourist island --- governance
Choose an application
The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.
Technology: general issues --- History of engineering & technology --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength
Choose an application
The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.
Technology: general issues --- History of engineering & technology --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength
Choose an application
The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.
ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength
Listing 1 - 4 of 4 |
Sort by
|