Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

Vlaams Parlement (3)

More...

Resource type

book (8)


Language

English (8)


Year
From To Submit

2022 (2)

2021 (3)

2020 (3)

Listing 1 - 8 of 8
Sort by

Book
Advancements in Hydropower Design and Operation for Present and Future Electrical Demand
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With current infrastructure, meeting the ever-growing demand for electrical energy across the globe is becoming increasingly difficult. The widespread adoption of both commercial and residential non-dispatchable renewable energy facilities, such as solar and wind, further taxes the stability of the electrical grid, often causing traditional fossil fuel power plants to operate at lower efficiency, and with increased carbon emissions. Hydropower, as a proven renewable energy technology, has a significant part to play in the future global electrical power market, especially as increasing demand for electric vehicles will further amplify the need for dispatchable energy sources during peak charging times. Even with more than a century of proven experience, significant opportunities still exist to expand the worldwide hydropower resources and more efficiently utilize existing hydropower installations. Given this context, this Special Issue of Energies intended to present recent developments and advancements in hydropower design and operation. This Special Issue includes five articles, authored by international research teams from Japan, Pakistan, Sweden, Norway, the United States, and China. The authors bring the collective expertise of government research laboratories, university professors, industry research engineers, computer scientists, and economists. The articles explore advancements in hydroturbine and pump-turbine design, power plant operation, auxiliary equipment design to mitigate environmental damage, and an exploration of community-owned small hydropower facilities.


Book
Advancements in Hydropower Design and Operation for Present and Future Electrical Demand
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With current infrastructure, meeting the ever-growing demand for electrical energy across the globe is becoming increasingly difficult. The widespread adoption of both commercial and residential non-dispatchable renewable energy facilities, such as solar and wind, further taxes the stability of the electrical grid, often causing traditional fossil fuel power plants to operate at lower efficiency, and with increased carbon emissions. Hydropower, as a proven renewable energy technology, has a significant part to play in the future global electrical power market, especially as increasing demand for electric vehicles will further amplify the need for dispatchable energy sources during peak charging times. Even with more than a century of proven experience, significant opportunities still exist to expand the worldwide hydropower resources and more efficiently utilize existing hydropower installations. Given this context, this Special Issue of Energies intended to present recent developments and advancements in hydropower design and operation. This Special Issue includes five articles, authored by international research teams from Japan, Pakistan, Sweden, Norway, the United States, and China. The authors bring the collective expertise of government research laboratories, university professors, industry research engineers, computer scientists, and economists. The articles explore advancements in hydroturbine and pump-turbine design, power plant operation, auxiliary equipment design to mitigate environmental damage, and an exploration of community-owned small hydropower facilities.


Book
Integration of Renewable and Distributed Energy Resources in Power Systems
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The electric power sector is poised for transformative changes. Improvements in the cost and performance of a range of distributed energy generation (DG) technologies and the potential for breakthroughs in distributed energy storage (DS) are creating new options for onsite power generation and storage, driving increasing adoption and impacting utility distribution system operations. In addition, changing uses and use patterns for electricity—from plug-in electric vehicles (EVs) to demand response (DR)—are altering demands placed on the electric power system. Finally, the infusion of new information and communications technology (ICT) into the electric system and its markets is enabling the collection of immense volumes of data on power sector operations and use; unprecedented control of generation, networks, and loads; and new opportunities for the delivery of energy services. In this Special Issue of Energies, research papers on topics related to the integration of distributed energy resources (DG, DS, EV, and DR) are included. From technologies to software tools to system-wide evaluations, the impacts of all aforementioned distributed resources on both operation and planning are examined.


Book
Integration of Renewable and Distributed Energy Resources in Power Systems
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The electric power sector is poised for transformative changes. Improvements in the cost and performance of a range of distributed energy generation (DG) technologies and the potential for breakthroughs in distributed energy storage (DS) are creating new options for onsite power generation and storage, driving increasing adoption and impacting utility distribution system operations. In addition, changing uses and use patterns for electricity—from plug-in electric vehicles (EVs) to demand response (DR)—are altering demands placed on the electric power system. Finally, the infusion of new information and communications technology (ICT) into the electric system and its markets is enabling the collection of immense volumes of data on power sector operations and use; unprecedented control of generation, networks, and loads; and new opportunities for the delivery of energy services. In this Special Issue of Energies, research papers on topics related to the integration of distributed energy resources (DG, DS, EV, and DR) are included. From technologies to software tools to system-wide evaluations, the impacts of all aforementioned distributed resources on both operation and planning are examined.


Book
Integration of Renewable and Distributed Energy Resources in Power Systems
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The electric power sector is poised for transformative changes. Improvements in the cost and performance of a range of distributed energy generation (DG) technologies and the potential for breakthroughs in distributed energy storage (DS) are creating new options for onsite power generation and storage, driving increasing adoption and impacting utility distribution system operations. In addition, changing uses and use patterns for electricity—from plug-in electric vehicles (EVs) to demand response (DR)—are altering demands placed on the electric power system. Finally, the infusion of new information and communications technology (ICT) into the electric system and its markets is enabling the collection of immense volumes of data on power sector operations and use; unprecedented control of generation, networks, and loads; and new opportunities for the delivery of energy services. In this Special Issue of Energies, research papers on topics related to the integration of distributed energy resources (DG, DS, EV, and DR) are included. From technologies to software tools to system-wide evaluations, the impacts of all aforementioned distributed resources on both operation and planning are examined.


Book
CFD Based Researches and Applications for Fluid Machinery and Fluid Device
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The demand for computational fluid dynamics (CFD)-based numerical techniques is increasing rapidly with the development of the computing power system. These advanced CFD techniques are applicable to various issues in the industrial engineering fields and especially contribute to the design of fluid machinery and fluid devices, which have very complicated unsteady flow phenomena and physics. In other words, to aid the rapid development of CFD techniques, the performances of fluid machinery and fluid devices with complicated unsteady flows have been enhanced significantly. In addition, many persistently troublesome problems of fluid machinery and fluid devices such as flow instability, rotor–stator interaction, surging, cavitation, vibration, and noise are solved clearly using advanced CFD techniques.This Special Issue on “CFD-Based Research and Applications for Fluid Machinery and Fluid Devices” aims to present recent novel research trends based on advanced CFD techniques for fluid machinery and fluid devices. The following topics, among others, are included in this issue:- CFD techniques and applications in fluid machinery and fluid devices;- Unsteady and transient phenomena in fluid machinery and fluid devices;- Pumps, fans, compressors, hydraulic turbines, pump turbines, valves, etc.

Keywords

Technology: general issues --- centrifugal fan --- noise characteristics --- power consumption --- negative pressure --- sound pressure --- mechanical seal --- dynamic characteristics --- extrusion fault --- numerical simulation --- sealing performance --- fluent --- inducer --- step casing --- varying pitch --- cavitating flow and instabilities --- partial similarity principle --- flow similarity --- stability improvement --- multi-condition optimization --- cavitation performance --- artificial neural networks (ANN) --- net positive suction head (NPSH) --- double suction --- cascade --- aerodynamic --- parameterization --- plane cascade design --- incidence angle --- PSO-MVFSA --- optimization --- two-vane pump --- Computational Fluid Dynamics (CFD) --- Reynolds-averaged Navier-Stokes (RANS) --- machine learning --- energy recovery --- pump as turbine --- vortex --- hydraulic losses --- pressure fluctuation --- transient characteristics --- centrifugal pump --- startup period --- solar air heater --- ribs --- Nusselt number --- friction factor --- Reynolds-averaged Navier–Stokes equations --- thrust coefficient --- power coefficient --- figure of merit --- frozen rotor --- UAV --- octorotor SUAV --- aerodynamic performance --- rotor spacing --- hover --- CFD --- vortices distribution --- shape optimization --- Francis turbine --- fixed flow passage --- flow uniformity --- blade outlet angle --- Sirocco fan --- URANS --- volute tongue radius --- internal flow --- noise --- film cooling --- large eddy simulation --- triple holes --- blowing ratio --- adiabatic film-cooling effectiveness --- proper orthogonal decomposition --- axial compressor --- tip clearance --- flow field --- clearance --- flow function --- gas turbine --- leakage --- pressure ratio --- stepped labyrinth seal --- axial-flow pump --- root clearance radius --- computational fluid dynamics --- entropy production --- energy dissipation --- vortex pump --- lateral cavity --- open-design --- spiral flow --- reactor coolant pump (RCP) --- waviness --- leakage rate --- liquid film --- axial fan --- reversible --- jet --- design --- thrust --- energy characteristics --- mixing --- pitched blade turbine --- impeller --- inverse design method --- matching optimization --- diffuser --- small hydropower --- tubular turbine --- fish farm --- performance test --- design factors --- optimum model --- the mixed free-surface-pressurized flow --- characteristic implicit method --- relative roughness --- vent holes --- optimization control --- microchannel heat sink --- wavy microchannel --- groove --- heat transfer performance --- laminar flow --- multi-objective optimization --- LHS --- full factorial methods --- pump-turbine --- dynamic stress --- start-up process --- vortex generator (VG) --- computational fluid dynamics (CFD) --- cell-set model --- RANS --- LES --- multistage centrifugal pump --- double-suction impeller --- twin-volute --- inducer-type guide vane --- trailing edge flap (TEF) --- trailing edge flap with Micro-Tab --- deflection angle of the flap (αF) --- n/a --- Reynolds-averaged Navier-Stokes equations


Book
CFD Based Researches and Applications for Fluid Machinery and Fluid Device
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The demand for computational fluid dynamics (CFD)-based numerical techniques is increasing rapidly with the development of the computing power system. These advanced CFD techniques are applicable to various issues in the industrial engineering fields and especially contribute to the design of fluid machinery and fluid devices, which have very complicated unsteady flow phenomena and physics. In other words, to aid the rapid development of CFD techniques, the performances of fluid machinery and fluid devices with complicated unsteady flows have been enhanced significantly. In addition, many persistently troublesome problems of fluid machinery and fluid devices such as flow instability, rotor–stator interaction, surging, cavitation, vibration, and noise are solved clearly using advanced CFD techniques.This Special Issue on “CFD-Based Research and Applications for Fluid Machinery and Fluid Devices” aims to present recent novel research trends based on advanced CFD techniques for fluid machinery and fluid devices. The following topics, among others, are included in this issue:- CFD techniques and applications in fluid machinery and fluid devices;- Unsteady and transient phenomena in fluid machinery and fluid devices;- Pumps, fans, compressors, hydraulic turbines, pump turbines, valves, etc.

Keywords

Technology: general issues --- centrifugal fan --- noise characteristics --- power consumption --- negative pressure --- sound pressure --- mechanical seal --- dynamic characteristics --- extrusion fault --- numerical simulation --- sealing performance --- fluent --- inducer --- step casing --- varying pitch --- cavitating flow and instabilities --- partial similarity principle --- flow similarity --- stability improvement --- multi-condition optimization --- cavitation performance --- artificial neural networks (ANN) --- net positive suction head (NPSH) --- double suction --- cascade --- aerodynamic --- parameterization --- plane cascade design --- incidence angle --- PSO-MVFSA --- optimization --- two-vane pump --- Computational Fluid Dynamics (CFD) --- Reynolds-averaged Navier-Stokes (RANS) --- machine learning --- energy recovery --- pump as turbine --- vortex --- hydraulic losses --- pressure fluctuation --- transient characteristics --- centrifugal pump --- startup period --- solar air heater --- ribs --- Nusselt number --- friction factor --- Reynolds-averaged Navier–Stokes equations --- thrust coefficient --- power coefficient --- figure of merit --- frozen rotor --- UAV --- octorotor SUAV --- aerodynamic performance --- rotor spacing --- hover --- CFD --- vortices distribution --- shape optimization --- Francis turbine --- fixed flow passage --- flow uniformity --- blade outlet angle --- Sirocco fan --- URANS --- volute tongue radius --- internal flow --- noise --- film cooling --- large eddy simulation --- triple holes --- blowing ratio --- adiabatic film-cooling effectiveness --- proper orthogonal decomposition --- axial compressor --- tip clearance --- flow field --- clearance --- flow function --- gas turbine --- leakage --- pressure ratio --- stepped labyrinth seal --- axial-flow pump --- root clearance radius --- computational fluid dynamics --- entropy production --- energy dissipation --- vortex pump --- lateral cavity --- open-design --- spiral flow --- reactor coolant pump (RCP) --- waviness --- leakage rate --- liquid film --- axial fan --- reversible --- jet --- design --- thrust --- energy characteristics --- mixing --- pitched blade turbine --- impeller --- inverse design method --- matching optimization --- diffuser --- small hydropower --- tubular turbine --- fish farm --- performance test --- design factors --- optimum model --- the mixed free-surface-pressurized flow --- characteristic implicit method --- relative roughness --- vent holes --- optimization control --- microchannel heat sink --- wavy microchannel --- groove --- heat transfer performance --- laminar flow --- multi-objective optimization --- LHS --- full factorial methods --- pump-turbine --- dynamic stress --- start-up process --- vortex generator (VG) --- computational fluid dynamics (CFD) --- cell-set model --- RANS --- LES --- multistage centrifugal pump --- double-suction impeller --- twin-volute --- inducer-type guide vane --- trailing edge flap (TEF) --- trailing edge flap with Micro-Tab --- deflection angle of the flap (αF) --- n/a --- Reynolds-averaged Navier-Stokes equations


Book
CFD Based Researches and Applications for Fluid Machinery and Fluid Device
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The demand for computational fluid dynamics (CFD)-based numerical techniques is increasing rapidly with the development of the computing power system. These advanced CFD techniques are applicable to various issues in the industrial engineering fields and especially contribute to the design of fluid machinery and fluid devices, which have very complicated unsteady flow phenomena and physics. In other words, to aid the rapid development of CFD techniques, the performances of fluid machinery and fluid devices with complicated unsteady flows have been enhanced significantly. In addition, many persistently troublesome problems of fluid machinery and fluid devices such as flow instability, rotor–stator interaction, surging, cavitation, vibration, and noise are solved clearly using advanced CFD techniques.This Special Issue on “CFD-Based Research and Applications for Fluid Machinery and Fluid Devices” aims to present recent novel research trends based on advanced CFD techniques for fluid machinery and fluid devices. The following topics, among others, are included in this issue:- CFD techniques and applications in fluid machinery and fluid devices;- Unsteady and transient phenomena in fluid machinery and fluid devices;- Pumps, fans, compressors, hydraulic turbines, pump turbines, valves, etc.

Keywords

centrifugal fan --- noise characteristics --- power consumption --- negative pressure --- sound pressure --- mechanical seal --- dynamic characteristics --- extrusion fault --- numerical simulation --- sealing performance --- fluent --- inducer --- step casing --- varying pitch --- cavitating flow and instabilities --- partial similarity principle --- flow similarity --- stability improvement --- multi-condition optimization --- cavitation performance --- artificial neural networks (ANN) --- net positive suction head (NPSH) --- double suction --- cascade --- aerodynamic --- parameterization --- plane cascade design --- incidence angle --- PSO-MVFSA --- optimization --- two-vane pump --- Computational Fluid Dynamics (CFD) --- Reynolds-averaged Navier-Stokes (RANS) --- machine learning --- energy recovery --- pump as turbine --- vortex --- hydraulic losses --- pressure fluctuation --- transient characteristics --- centrifugal pump --- startup period --- solar air heater --- ribs --- Nusselt number --- friction factor --- Reynolds-averaged Navier–Stokes equations --- thrust coefficient --- power coefficient --- figure of merit --- frozen rotor --- UAV --- octorotor SUAV --- aerodynamic performance --- rotor spacing --- hover --- CFD --- vortices distribution --- shape optimization --- Francis turbine --- fixed flow passage --- flow uniformity --- blade outlet angle --- Sirocco fan --- URANS --- volute tongue radius --- internal flow --- noise --- film cooling --- large eddy simulation --- triple holes --- blowing ratio --- adiabatic film-cooling effectiveness --- proper orthogonal decomposition --- axial compressor --- tip clearance --- flow field --- clearance --- flow function --- gas turbine --- leakage --- pressure ratio --- stepped labyrinth seal --- axial-flow pump --- root clearance radius --- computational fluid dynamics --- entropy production --- energy dissipation --- vortex pump --- lateral cavity --- open-design --- spiral flow --- reactor coolant pump (RCP) --- waviness --- leakage rate --- liquid film --- axial fan --- reversible --- jet --- design --- thrust --- energy characteristics --- mixing --- pitched blade turbine --- impeller --- inverse design method --- matching optimization --- diffuser --- small hydropower --- tubular turbine --- fish farm --- performance test --- design factors --- optimum model --- the mixed free-surface-pressurized flow --- characteristic implicit method --- relative roughness --- vent holes --- optimization control --- microchannel heat sink --- wavy microchannel --- groove --- heat transfer performance --- laminar flow --- multi-objective optimization --- LHS --- full factorial methods --- pump-turbine --- dynamic stress --- start-up process --- vortex generator (VG) --- computational fluid dynamics (CFD) --- cell-set model --- RANS --- LES --- multistage centrifugal pump --- double-suction impeller --- twin-volute --- inducer-type guide vane --- trailing edge flap (TEF) --- trailing edge flap with Micro-Tab --- deflection angle of the flap (αF) --- n/a --- Reynolds-averaged Navier-Stokes equations

Listing 1 - 8 of 8
Sort by