Listing 1 - 4 of 4 |
Sort by
|
Choose an application
This thesis was written as part of an eight months' project conducted within the Mac Valves Europe company. This project involved the design and implementation of a dashboards system helpful for the strategic management of this company. In this report, the approach used, statements and outcomes of the actions are detailed in three main chapters; Context analysis First, a short company presentation and a context analysis in order to understand the business and project environment will be presented. On this basis, we will be able to refine the initial request made by the company and to identify the management challenges. Content of the project In the Content Chapter, you will find the approach used in order to develop the key performance indicators in relation with the company objectives and corporate strategy, the choice of the ad hoc tool and the design of the dashboards. Change management process The final chapter will present the analysis of the changes appropriation by the various stakeholders and propose different recommendations to ensure the sustainability and evolution of the new system.
Choose an application
In recent years, the industrial environment has been changing radically due to the introduction of concepts and technologies based on the fourth industrial revolution, also known as Industry 4.0. After the introduction of Industry 4.0 in large enterprises, SMEs have moved into the focus, as they are the backbone of many economies. Small organizations are increasingly proactive in improving their operational processes, which is a good starting point for introducing the new concepts of Industry 4.0. The readiness of SME-adapted Industry 4.0 concepts and the organizational capability of SMEs to meet this challenge exist only in some areas. This reveals the need for further research and action plans for preparing SMEs in a technical and organizational direction. Therefore, special research and investigations are needed for the implementation of Industry 4.0 technologies and concepts in SMEs. SMEs will only achieve Industry 4.0 by following SME-customized implementation strategies and approaches and realizing SME-adapted concepts and technological solutions. Thus, this Special Issue represents a collection of theoretical models as well as practical case studies related to the introduction of Industry 4.0 concepts in small- and medium-sized enterprises.
History of engineering & technology --- latent semantic analysis --- virtual quality management --- concept investigation --- concept disambiguation --- knowledge discovery --- sustainable methodologies --- small and medium sized enterprises --- material handling systems --- simulation --- ARENA®, time study --- overall equipment effectiveness --- manufacturing performance --- Industry 4.0 --- manufacturing sustainability --- manufacturing process model --- business process management --- hierarchical clustering --- similarity --- BPMN --- human factors --- cyber-physical systems --- cyber-physical production systems --- anthropocentric design --- Operator 4.0 --- human–machine interaction --- energy efficient operation --- manufacturing system --- stochastic event --- digital twin --- Max-plus Algebra --- MATLAB-Simulink --- advanced manufacturing --- industry 4.0 --- SME --- technology adoption model --- assembly supply chain --- sustainability --- complexity indicators --- testing criteria --- SMEs --- e-business modelling --- LSP Lifecycle Model --- Quality Function Deployment --- Best-Worst Method --- Internet of Things --- India --- awareness --- small and medium-sized enterprises --- assessment model --- collaborative robotics --- physical ergonomics --- human-robot collaboration --- human-centered design --- assembly --- small and medium sized enterprise --- positive complexity --- negative complexity --- infeasible configurations --- product platform --- customer’s perception --- assessment --- field study --- smart manufacturing --- cloud platform --- artificial intelligence --- machine learning --- deep learning --- smart logistics --- logistics 4.0 --- smart technologies --- sustainable agriculture --- plant factory --- latent semantic analysis --- virtual quality management --- concept investigation --- concept disambiguation --- knowledge discovery --- sustainable methodologies --- small and medium sized enterprises --- material handling systems --- simulation --- ARENA®, time study --- overall equipment effectiveness --- manufacturing performance --- Industry 4.0 --- manufacturing sustainability --- manufacturing process model --- business process management --- hierarchical clustering --- similarity --- BPMN --- human factors --- cyber-physical systems --- cyber-physical production systems --- anthropocentric design --- Operator 4.0 --- human–machine interaction --- energy efficient operation --- manufacturing system --- stochastic event --- digital twin --- Max-plus Algebra --- MATLAB-Simulink --- advanced manufacturing --- industry 4.0 --- SME --- technology adoption model --- assembly supply chain --- sustainability --- complexity indicators --- testing criteria --- SMEs --- e-business modelling --- LSP Lifecycle Model --- Quality Function Deployment --- Best-Worst Method --- Internet of Things --- India --- awareness --- small and medium-sized enterprises --- assessment model --- collaborative robotics --- physical ergonomics --- human-robot collaboration --- human-centered design --- assembly --- small and medium sized enterprise --- positive complexity --- negative complexity --- infeasible configurations --- product platform --- customer’s perception --- assessment --- field study --- smart manufacturing --- cloud platform --- artificial intelligence --- machine learning --- deep learning --- smart logistics --- logistics 4.0 --- smart technologies --- sustainable agriculture --- plant factory
Choose an application
In recent years, the industrial environment has been changing radically due to the introduction of concepts and technologies based on the fourth industrial revolution, also known as Industry 4.0. After the introduction of Industry 4.0 in large enterprises, SMEs have moved into the focus, as they are the backbone of many economies. Small organizations are increasingly proactive in improving their operational processes, which is a good starting point for introducing the new concepts of Industry 4.0. The readiness of SME-adapted Industry 4.0 concepts and the organizational capability of SMEs to meet this challenge exist only in some areas. This reveals the need for further research and action plans for preparing SMEs in a technical and organizational direction. Therefore, special research and investigations are needed for the implementation of Industry 4.0 technologies and concepts in SMEs. SMEs will only achieve Industry 4.0 by following SME-customized implementation strategies and approaches and realizing SME-adapted concepts and technological solutions. Thus, this Special Issue represents a collection of theoretical models as well as practical case studies related to the introduction of Industry 4.0 concepts in small- and medium-sized enterprises.
History of engineering & technology --- latent semantic analysis --- virtual quality management --- concept investigation --- concept disambiguation --- knowledge discovery --- sustainable methodologies --- small and medium sized enterprises --- material handling systems --- simulation --- ARENA®, time study --- overall equipment effectiveness --- manufacturing performance --- Industry 4.0 --- manufacturing sustainability --- manufacturing process model --- business process management --- hierarchical clustering --- similarity --- BPMN --- human factors --- cyber-physical systems --- cyber-physical production systems --- anthropocentric design --- Operator 4.0 --- human–machine interaction --- energy efficient operation --- manufacturing system --- stochastic event --- digital twin --- Max-plus Algebra --- MATLAB-Simulink --- advanced manufacturing --- industry 4.0 --- SME --- technology adoption model --- assembly supply chain --- sustainability --- complexity indicators --- testing criteria --- SMEs --- e-business modelling --- LSP Lifecycle Model --- Quality Function Deployment --- Best-Worst Method --- Internet of Things --- India --- awareness --- small and medium-sized enterprises --- assessment model --- collaborative robotics --- physical ergonomics --- human-robot collaboration --- human-centered design --- assembly --- small and medium sized enterprise --- positive complexity --- negative complexity --- infeasible configurations --- product platform --- customer’s perception --- assessment --- field study --- smart manufacturing --- cloud platform --- artificial intelligence --- machine learning --- deep learning --- smart logistics --- logistics 4.0 --- smart technologies --- sustainable agriculture --- plant factory
Choose an application
In recent years, the industrial environment has been changing radically due to the introduction of concepts and technologies based on the fourth industrial revolution, also known as Industry 4.0. After the introduction of Industry 4.0 in large enterprises, SMEs have moved into the focus, as they are the backbone of many economies. Small organizations are increasingly proactive in improving their operational processes, which is a good starting point for introducing the new concepts of Industry 4.0. The readiness of SME-adapted Industry 4.0 concepts and the organizational capability of SMEs to meet this challenge exist only in some areas. This reveals the need for further research and action plans for preparing SMEs in a technical and organizational direction. Therefore, special research and investigations are needed for the implementation of Industry 4.0 technologies and concepts in SMEs. SMEs will only achieve Industry 4.0 by following SME-customized implementation strategies and approaches and realizing SME-adapted concepts and technological solutions. Thus, this Special Issue represents a collection of theoretical models as well as practical case studies related to the introduction of Industry 4.0 concepts in small- and medium-sized enterprises.
latent semantic analysis --- virtual quality management --- concept investigation --- concept disambiguation --- knowledge discovery --- sustainable methodologies --- small and medium sized enterprises --- material handling systems --- simulation --- ARENA®, time study --- overall equipment effectiveness --- manufacturing performance --- Industry 4.0 --- manufacturing sustainability --- manufacturing process model --- business process management --- hierarchical clustering --- similarity --- BPMN --- human factors --- cyber-physical systems --- cyber-physical production systems --- anthropocentric design --- Operator 4.0 --- human–machine interaction --- energy efficient operation --- manufacturing system --- stochastic event --- digital twin --- Max-plus Algebra --- MATLAB-Simulink --- advanced manufacturing --- industry 4.0 --- SME --- technology adoption model --- assembly supply chain --- sustainability --- complexity indicators --- testing criteria --- SMEs --- e-business modelling --- LSP Lifecycle Model --- Quality Function Deployment --- Best-Worst Method --- Internet of Things --- India --- awareness --- small and medium-sized enterprises --- assessment model --- collaborative robotics --- physical ergonomics --- human-robot collaboration --- human-centered design --- assembly --- small and medium sized enterprise --- positive complexity --- negative complexity --- infeasible configurations --- product platform --- customer’s perception --- assessment --- field study --- smart manufacturing --- cloud platform --- artificial intelligence --- machine learning --- deep learning --- smart logistics --- logistics 4.0 --- smart technologies --- sustainable agriculture --- plant factory
Listing 1 - 4 of 4 |
Sort by
|