Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The book is a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration. One of the most ambitious aspirations of modern medical science is the possibility of regenerating any damaged part of the body, including skeletal muscle. This desire has prompted clinicians and researchers to search for innovative technologies aimed at replacing organs and tissues that are compromised. In this context, the papers, collected in this book, addressing a specific aspects of muscle homeostasis and regeneration under physiopathologic conditions, will help us to better understand the underlying mechanisms of muscle healing and will help to design more appropriate therapeutic approaches to improve muscle regeneration and to counteract muscle diseases.
Research & information: general --- Biology, life sciences --- lysine --- mTORC1 --- satellite cells --- proliferation --- skeletal muscle growth --- muscle satellite cell --- transthyretin --- thyroid hormone --- myogenesis --- exosomes --- skeletal muscle --- genotype --- genetic variation --- muscle phenotypes --- sarcopenia --- aging --- calcium homeostasis --- hibernation --- mitochondria --- sarcoplasmic reticulum --- Acvr1b --- Tgfbr1 --- myostatin --- Col1a1 --- fibrosis --- atrophy --- IGF2R --- muscle homeostasis --- inflammation --- muscular dystrophy --- pericytes --- macrophages --- Nfix --- phagocytosis --- RhoA-ROCK1 --- splicing isoforms --- CRISPR-Cas9 --- exon deletion --- NF-Y --- muscle differentiation --- C2C12 cells --- denervation --- neuromuscular junction --- heavy resistance exercise --- acetylcholine receptor --- cell culture --- neonatal myosin --- neural cell adhesion molecule --- biomarkers --- mitophagy --- mitochondrial dynamics --- mitochondrial quality control --- mitochondrial-derived vesicles (MDVs) --- mitochondrial-lysosomal axis --- Hibernation --- electron microscopy --- immunocytochemistry --- α-smooth muscle actin --- confocal microscopy --- connexin 43 --- connexin 26 --- gap junctions --- myofibroblasts --- Platelet-Rich Plasma --- transforming growth factor (TGF)-β1 --- muscle regeneration --- inflammatory response --- cell precursors --- experimental methods --- stem cell markers --- muscles --- heterotopic ossification --- skeletal muscle stem and progenitor cells --- HO precursors --- muscle atrophy --- septicemia --- mitochondrial fusion --- mitochondrial fission --- iPSC --- extracellular vesicles --- Drosophila --- muscle --- genetic control --- muscle diversification --- fascicle --- myofiber --- myofibril --- sarcomere --- hypertrophy --- hyperplasia --- splitting --- radial growth --- longitudinal growth --- exercise --- muscle stem cells --- stem cells niche --- neuromuscular disorders --- Duchenne muscular dystrophy --- pharmacological approach --- single-cell --- mass cytometry --- skeletal muscle regeneration --- skeletal muscle homeostasis --- fibro/adipogenic progenitors --- myogenic progenitors --- muscle populations --- evolution --- metazoans --- differentiation --- transdifferentiation --- muscle precursors --- regenerative medicine --- stem cells --- FAPs --- tissue niche --- growth factors --- muscle pathology --- lysine --- mTORC1 --- satellite cells --- proliferation --- skeletal muscle growth --- muscle satellite cell --- transthyretin --- thyroid hormone --- myogenesis --- exosomes --- skeletal muscle --- genotype --- genetic variation --- muscle phenotypes --- sarcopenia --- aging --- calcium homeostasis --- hibernation --- mitochondria --- sarcoplasmic reticulum --- Acvr1b --- Tgfbr1 --- myostatin --- Col1a1 --- fibrosis --- atrophy --- IGF2R --- muscle homeostasis --- inflammation --- muscular dystrophy --- pericytes --- macrophages --- Nfix --- phagocytosis --- RhoA-ROCK1 --- splicing isoforms --- CRISPR-Cas9 --- exon deletion --- NF-Y --- muscle differentiation --- C2C12 cells --- denervation --- neuromuscular junction --- heavy resistance exercise --- acetylcholine receptor --- cell culture --- neonatal myosin --- neural cell adhesion molecule --- biomarkers --- mitophagy --- mitochondrial dynamics --- mitochondrial quality control --- mitochondrial-derived vesicles (MDVs) --- mitochondrial-lysosomal axis --- Hibernation --- electron microscopy --- immunocytochemistry --- α-smooth muscle actin --- confocal microscopy --- connexin 43 --- connexin 26 --- gap junctions --- myofibroblasts --- Platelet-Rich Plasma --- transforming growth factor (TGF)-β1 --- muscle regeneration --- inflammatory response --- cell precursors --- experimental methods --- stem cell markers --- muscles --- heterotopic ossification --- skeletal muscle stem and progenitor cells --- HO precursors --- muscle atrophy --- septicemia --- mitochondrial fusion --- mitochondrial fission --- iPSC --- extracellular vesicles --- Drosophila --- muscle --- genetic control --- muscle diversification --- fascicle --- myofiber --- myofibril --- sarcomere --- hypertrophy --- hyperplasia --- splitting --- radial growth --- longitudinal growth --- exercise --- muscle stem cells --- stem cells niche --- neuromuscular disorders --- Duchenne muscular dystrophy --- pharmacological approach --- single-cell --- mass cytometry --- skeletal muscle regeneration --- skeletal muscle homeostasis --- fibro/adipogenic progenitors --- myogenic progenitors --- muscle populations --- evolution --- metazoans --- differentiation --- transdifferentiation --- muscle precursors --- regenerative medicine --- stem cells --- FAPs --- tissue niche --- growth factors --- muscle pathology
Choose an application
The book is a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration. One of the most ambitious aspirations of modern medical science is the possibility of regenerating any damaged part of the body, including skeletal muscle. This desire has prompted clinicians and researchers to search for innovative technologies aimed at replacing organs and tissues that are compromised. In this context, the papers, collected in this book, addressing a specific aspects of muscle homeostasis and regeneration under physiopathologic conditions, will help us to better understand the underlying mechanisms of muscle healing and will help to design more appropriate therapeutic approaches to improve muscle regeneration and to counteract muscle diseases.
Research & information: general --- Biology, life sciences --- lysine --- mTORC1 --- satellite cells --- proliferation --- skeletal muscle growth --- muscle satellite cell --- transthyretin --- thyroid hormone --- myogenesis --- exosomes --- skeletal muscle --- genotype --- genetic variation --- muscle phenotypes --- sarcopenia --- aging --- calcium homeostasis --- hibernation --- mitochondria --- sarcoplasmic reticulum --- Acvr1b --- Tgfbr1 --- myostatin --- Col1a1 --- fibrosis --- atrophy --- IGF2R --- muscle homeostasis --- inflammation --- muscular dystrophy --- pericytes --- macrophages --- Nfix --- phagocytosis --- RhoA-ROCK1 --- splicing isoforms --- CRISPR-Cas9 --- exon deletion --- NF-Y --- muscle differentiation --- C2C12 cells --- denervation --- neuromuscular junction --- heavy resistance exercise --- acetylcholine receptor --- cell culture --- neonatal myosin --- neural cell adhesion molecule --- biomarkers --- mitophagy --- mitochondrial dynamics --- mitochondrial quality control --- mitochondrial-derived vesicles (MDVs) --- mitochondrial-lysosomal axis --- Hibernation --- electron microscopy --- immunocytochemistry --- α-smooth muscle actin --- confocal microscopy --- connexin 43 --- connexin 26 --- gap junctions --- myofibroblasts --- Platelet-Rich Plasma --- transforming growth factor (TGF)-β1 --- muscle regeneration --- inflammatory response --- cell precursors --- experimental methods --- stem cell markers --- muscles --- heterotopic ossification --- skeletal muscle stem and progenitor cells --- HO precursors --- muscle atrophy --- septicemia --- mitochondrial fusion --- mitochondrial fission --- iPSC --- extracellular vesicles --- Drosophila --- muscle --- genetic control --- muscle diversification --- fascicle --- myofiber --- myofibril --- sarcomere --- hypertrophy --- hyperplasia --- splitting --- radial growth --- longitudinal growth --- exercise --- muscle stem cells --- stem cells niche --- neuromuscular disorders --- Duchenne muscular dystrophy --- pharmacological approach --- single-cell --- mass cytometry --- skeletal muscle regeneration --- skeletal muscle homeostasis --- fibro/adipogenic progenitors --- myogenic progenitors --- muscle populations --- evolution --- metazoans --- differentiation --- transdifferentiation --- muscle precursors --- regenerative medicine --- stem cells --- FAPs --- tissue niche --- growth factors --- muscle pathology
Choose an application
The book is a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration. One of the most ambitious aspirations of modern medical science is the possibility of regenerating any damaged part of the body, including skeletal muscle. This desire has prompted clinicians and researchers to search for innovative technologies aimed at replacing organs and tissues that are compromised. In this context, the papers, collected in this book, addressing a specific aspects of muscle homeostasis and regeneration under physiopathologic conditions, will help us to better understand the underlying mechanisms of muscle healing and will help to design more appropriate therapeutic approaches to improve muscle regeneration and to counteract muscle diseases.
lysine --- mTORC1 --- satellite cells --- proliferation --- skeletal muscle growth --- muscle satellite cell --- transthyretin --- thyroid hormone --- myogenesis --- exosomes --- skeletal muscle --- genotype --- genetic variation --- muscle phenotypes --- sarcopenia --- aging --- calcium homeostasis --- hibernation --- mitochondria --- sarcoplasmic reticulum --- Acvr1b --- Tgfbr1 --- myostatin --- Col1a1 --- fibrosis --- atrophy --- IGF2R --- muscle homeostasis --- inflammation --- muscular dystrophy --- pericytes --- macrophages --- Nfix --- phagocytosis --- RhoA-ROCK1 --- splicing isoforms --- CRISPR-Cas9 --- exon deletion --- NF-Y --- muscle differentiation --- C2C12 cells --- denervation --- neuromuscular junction --- heavy resistance exercise --- acetylcholine receptor --- cell culture --- neonatal myosin --- neural cell adhesion molecule --- biomarkers --- mitophagy --- mitochondrial dynamics --- mitochondrial quality control --- mitochondrial-derived vesicles (MDVs) --- mitochondrial-lysosomal axis --- Hibernation --- electron microscopy --- immunocytochemistry --- α-smooth muscle actin --- confocal microscopy --- connexin 43 --- connexin 26 --- gap junctions --- myofibroblasts --- Platelet-Rich Plasma --- transforming growth factor (TGF)-β1 --- muscle regeneration --- inflammatory response --- cell precursors --- experimental methods --- stem cell markers --- muscles --- heterotopic ossification --- skeletal muscle stem and progenitor cells --- HO precursors --- muscle atrophy --- septicemia --- mitochondrial fusion --- mitochondrial fission --- iPSC --- extracellular vesicles --- Drosophila --- muscle --- genetic control --- muscle diversification --- fascicle --- myofiber --- myofibril --- sarcomere --- hypertrophy --- hyperplasia --- splitting --- radial growth --- longitudinal growth --- exercise --- muscle stem cells --- stem cells niche --- neuromuscular disorders --- Duchenne muscular dystrophy --- pharmacological approach --- single-cell --- mass cytometry --- skeletal muscle regeneration --- skeletal muscle homeostasis --- fibro/adipogenic progenitors --- myogenic progenitors --- muscle populations --- evolution --- metazoans --- differentiation --- transdifferentiation --- muscle precursors --- regenerative medicine --- stem cells --- FAPs --- tissue niche --- growth factors --- muscle pathology
Listing 1 - 3 of 3 |
Sort by
|