Narrow your search

Library

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULiège (4)

VIVES (4)

Vlaams Parlement (4)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (1)

2020 (3)

2019 (2)

Listing 1 - 6 of 6
Sort by

Book
Plasmonics and its Applications
Author:
ISBN: 3038979155 3038979147 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plasmonics is a rapidly developing field that combines fundamental research and applications ranging from areas such as physics to engineering, chemistry, biology, medicine, food sciences, and the environmental sciences. Plasmonics appeared in the 1950s with the discovery of surface plasmon polaritons. Plasmonics then went through a novel propulsion in the mid-1970s, when surface-enhanced Raman scattering was discovered. Nevertheless, it is in this last decade that a very significant explosion of plasmonics and its applications has occurred. Thus, this book provides a snapshot of the current advances in these various areas of plasmonics and its applications, such as engineering, sensing, surface-enhanced fluorescence, catalysis, and photovoltaic devices.


Book
Advanced Materials and Nanotechnology for Sustainable Energy and Environmental Applications
Authors: ---
ISBN: 3036552308 3036552294 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials play a very important role in the technological development of a society. As a consequence, the continuous demand for more advanced and sophisticated applications is closely linked to the availability of innovative materials. Although aspects related to the study, the synthesis and the applications of materials are of interdisciplinary interest, in the last few years, great attention has been paid to the development of advanced materials for environmental preservation and sustainable energy technologies, such as gaseous pollutant monitoring, waste water treatment, catalysis, carbon dioxide valorization, green fuel production, energy saving, water adsorption and clean technologies. This Special Issue aims at covering the current design, synthesis and characterization of innovative advanced materials, as well as novel nanotechnologies able to offer promising solutions to the these pressing themes.


Book
HVDC for Grid Services in Electric Power Systems
Author:
ISBN: 3039217631 3039217623 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The modern electric power system has evolved into a huge nonlinear complex system due to the interconnection of thousands of generation and transmission systems. The unparalleled growth of renewable energy resources (RESs) has caused significant concern regarding grid stability and power quality, and it is essential to find ways to control such a massive system for effective operation. The controllability of HVDC and FACTS devices allows for improvement of the dynamic behavior of grids and their flexibility. Research is being carried out at both the system and component levels of modelling, control, and stability. This Special Issue aims to present novel HVDC topologies and operation strategies to prevent abnormal grid conditions.


Book
Modeling of Wind Turbines and Wind Farms
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wind Power Plant (WPP) and Wind Turbine (WT) modeling are becoming of key importance due to the relevant wind-generation impact on power systems. Wind integration into power systems must be carefully analyzed to forecast the effects on grid stability and reliability. Different agents, such as Transmission System Operators (TSOs) and Distribution System Operators (DSOs), focus on transient analyses. Wind turbine manufacturers, power system software developers, and technical consultants are also involved. WPP and WT dynamic models are often divided into two types: detailed and simplified. Detailed models are used for Electro-Magnetic Transient (EMT) simulations, providing both electrical and mechanical responses with high accuracy during short time intervals. Simplified models, also known as standard or generic models, are designed to give reliable responses, avoiding high computational resources. Simplified models are commonly used by TSOs and DSOs to carry out different transient stability studies, including loss of generation, switching of power lines or balanced faults, etc., Assessment and validation of such dynamic models is also a major issue due to the importance and difficulty of collecting real data. Solutions facing all these challenges, including the development, validation and application of WT and WPP models are presented in this Issue.

Keywords

History of engineering & technology --- bearing current --- common mode current --- doubly fed induction generators --- permanent magnet synchronous generators --- wind turbine generator --- doubly-fed generator --- converter control --- short-circuit current --- second harmonic component --- low-voltage ride-through (LVRT) field test data --- complex terrain --- terrain-induced turbulence --- turbulence intensity --- LES --- vortex shedding --- frequency control --- wind power integration --- power system stability --- turbulence --- statistical modelling --- Wind Turbine (WT) --- Doubly Fed Induction Generator (DFIG) --- unbalanced grid voltage --- DC-linked voltage control --- Proportional Resonant with Resonant Harmonic Compensator (PR+HC) controller --- Adaptive Proportional Integral (API) control --- power control --- wind turbine near wake --- wind turbine wakes --- wake aerodynamics --- computational fluid dynamics --- rotor aerodynamics --- wind turbine validation --- MEXICO experiment --- wind energy --- model validation --- wind turbine aerodynamics --- wind farms --- wind turbines interaction --- wind farm modeling --- kernel density estimation --- multiple wind farms --- joint probability density --- ordinal optimization --- reactive power capability --- wind power plant --- wind power collection system --- aggregated, modelling --- wind integration studies --- long term voltage stability --- fault-ride through capability --- IEC 61400-27-1 --- Spanish PO 12.3 --- Type 3 wind turbine --- inertia --- wind power --- droop --- primary control --- frequency containment process --- wind integration --- demand response --- ancillary services --- wind turbine nacelle --- lightning electromagnetic pulse (LEMP) --- magnetic field intensity --- shielding mesh --- wake steering --- yaw misalignment --- multi body simulation --- main bearing loads --- rain flow counts --- aeroelasticity --- multi-rotor system --- wind turbine --- computational fluid dynamics (CFD) --- horizontal-axis wind turbine (HAWT) --- permanent-magnet synchronous-generator (PMSG) --- linear quadratic regulator (LQR) --- PI control algorithm --- LQR-PI control --- wind turbine blade --- large-eddy simulation --- turbulence evaluation index --- fatigue damage evaluation index --- DIgSILENT-PowerFactory --- MATLAB --- transient stability --- type 3 wind turbine --- DFIG --- field testing --- full-scale converter --- generic model --- validation --- HAWT --- aerodynamic characteristics --- dynamic yawing process --- near wake --- start-stop yaw velocity --- load frequency control (LFC) --- equivalent input disturbance (EID) --- active disturbance rejection control (ADRC) --- wind --- linear matrix inequalities (LMI) --- dynamic modeling --- grey-box parameter identification --- subspace identification --- recursive least squares --- optimal identification --- bearing current --- common mode current --- doubly fed induction generators --- permanent magnet synchronous generators --- wind turbine generator --- doubly-fed generator --- converter control --- short-circuit current --- second harmonic component --- low-voltage ride-through (LVRT) field test data --- complex terrain --- terrain-induced turbulence --- turbulence intensity --- LES --- vortex shedding --- frequency control --- wind power integration --- power system stability --- turbulence --- statistical modelling --- Wind Turbine (WT) --- Doubly Fed Induction Generator (DFIG) --- unbalanced grid voltage --- DC-linked voltage control --- Proportional Resonant with Resonant Harmonic Compensator (PR+HC) controller --- Adaptive Proportional Integral (API) control --- power control --- wind turbine near wake --- wind turbine wakes --- wake aerodynamics --- computational fluid dynamics --- rotor aerodynamics --- wind turbine validation --- MEXICO experiment --- wind energy --- model validation --- wind turbine aerodynamics --- wind farms --- wind turbines interaction --- wind farm modeling --- kernel density estimation --- multiple wind farms --- joint probability density --- ordinal optimization --- reactive power capability --- wind power plant --- wind power collection system --- aggregated, modelling --- wind integration studies --- long term voltage stability --- fault-ride through capability --- IEC 61400-27-1 --- Spanish PO 12.3 --- Type 3 wind turbine --- inertia --- wind power --- droop --- primary control --- frequency containment process --- wind integration --- demand response --- ancillary services --- wind turbine nacelle --- lightning electromagnetic pulse (LEMP) --- magnetic field intensity --- shielding mesh --- wake steering --- yaw misalignment --- multi body simulation --- main bearing loads --- rain flow counts --- aeroelasticity --- multi-rotor system --- wind turbine --- computational fluid dynamics (CFD) --- horizontal-axis wind turbine (HAWT) --- permanent-magnet synchronous-generator (PMSG) --- linear quadratic regulator (LQR) --- PI control algorithm --- LQR-PI control --- wind turbine blade --- large-eddy simulation --- turbulence evaluation index --- fatigue damage evaluation index --- DIgSILENT-PowerFactory --- MATLAB --- transient stability --- type 3 wind turbine --- DFIG --- field testing --- full-scale converter --- generic model --- validation --- HAWT --- aerodynamic characteristics --- dynamic yawing process --- near wake --- start-stop yaw velocity --- load frequency control (LFC) --- equivalent input disturbance (EID) --- active disturbance rejection control (ADRC) --- wind --- linear matrix inequalities (LMI) --- dynamic modeling --- grey-box parameter identification --- subspace identification --- recursive least squares --- optimal identification


Book
Modeling of Wind Turbines and Wind Farms
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wind Power Plant (WPP) and Wind Turbine (WT) modeling are becoming of key importance due to the relevant wind-generation impact on power systems. Wind integration into power systems must be carefully analyzed to forecast the effects on grid stability and reliability. Different agents, such as Transmission System Operators (TSOs) and Distribution System Operators (DSOs), focus on transient analyses. Wind turbine manufacturers, power system software developers, and technical consultants are also involved. WPP and WT dynamic models are often divided into two types: detailed and simplified. Detailed models are used for Electro-Magnetic Transient (EMT) simulations, providing both electrical and mechanical responses with high accuracy during short time intervals. Simplified models, also known as standard or generic models, are designed to give reliable responses, avoiding high computational resources. Simplified models are commonly used by TSOs and DSOs to carry out different transient stability studies, including loss of generation, switching of power lines or balanced faults, etc., Assessment and validation of such dynamic models is also a major issue due to the importance and difficulty of collecting real data. Solutions facing all these challenges, including the development, validation and application of WT and WPP models are presented in this Issue.

Keywords

History of engineering & technology --- bearing current --- common mode current --- doubly fed induction generators --- permanent magnet synchronous generators --- wind turbine generator --- doubly-fed generator --- converter control --- short-circuit current --- second harmonic component --- low-voltage ride-through (LVRT) field test data --- complex terrain --- terrain-induced turbulence --- turbulence intensity --- LES --- vortex shedding --- frequency control --- wind power integration --- power system stability --- turbulence --- statistical modelling --- Wind Turbine (WT) --- Doubly Fed Induction Generator (DFIG) --- unbalanced grid voltage --- DC-linked voltage control --- Proportional Resonant with Resonant Harmonic Compensator (PR+HC) controller --- Adaptive Proportional Integral (API) control --- power control --- wind turbine near wake --- wind turbine wakes --- wake aerodynamics --- computational fluid dynamics --- rotor aerodynamics --- wind turbine validation --- MEXICO experiment --- wind energy --- model validation --- wind turbine aerodynamics --- wind farms --- wind turbines interaction --- wind farm modeling --- kernel density estimation --- multiple wind farms --- joint probability density --- ordinal optimization --- reactive power capability --- wind power plant --- wind power collection system --- aggregated, modelling --- wind integration studies --- long term voltage stability --- fault-ride through capability --- IEC 61400-27-1 --- Spanish PO 12.3 --- Type 3 wind turbine --- inertia --- wind power --- droop --- primary control --- frequency containment process --- wind integration --- demand response --- ancillary services --- wind turbine nacelle --- lightning electromagnetic pulse (LEMP) --- magnetic field intensity --- shielding mesh --- wake steering --- yaw misalignment --- multi body simulation --- main bearing loads --- rain flow counts --- aeroelasticity --- multi-rotor system --- wind turbine --- computational fluid dynamics (CFD) --- horizontal-axis wind turbine (HAWT) --- permanent-magnet synchronous-generator (PMSG) --- linear quadratic regulator (LQR) --- PI control algorithm --- LQR-PI control --- wind turbine blade --- large-eddy simulation --- turbulence evaluation index --- fatigue damage evaluation index --- DIgSILENT-PowerFactory --- MATLAB --- transient stability --- type 3 wind turbine --- DFIG --- field testing --- full-scale converter --- generic model --- validation --- HAWT --- aerodynamic characteristics --- dynamic yawing process --- near wake --- start-stop yaw velocity --- load frequency control (LFC) --- equivalent input disturbance (EID) --- active disturbance rejection control (ADRC) --- wind --- linear matrix inequalities (LMI) --- dynamic modeling --- grey-box parameter identification --- subspace identification --- recursive least squares --- optimal identification


Book
Modeling of Wind Turbines and Wind Farms
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wind Power Plant (WPP) and Wind Turbine (WT) modeling are becoming of key importance due to the relevant wind-generation impact on power systems. Wind integration into power systems must be carefully analyzed to forecast the effects on grid stability and reliability. Different agents, such as Transmission System Operators (TSOs) and Distribution System Operators (DSOs), focus on transient analyses. Wind turbine manufacturers, power system software developers, and technical consultants are also involved. WPP and WT dynamic models are often divided into two types: detailed and simplified. Detailed models are used for Electro-Magnetic Transient (EMT) simulations, providing both electrical and mechanical responses with high accuracy during short time intervals. Simplified models, also known as standard or generic models, are designed to give reliable responses, avoiding high computational resources. Simplified models are commonly used by TSOs and DSOs to carry out different transient stability studies, including loss of generation, switching of power lines or balanced faults, etc., Assessment and validation of such dynamic models is also a major issue due to the importance and difficulty of collecting real data. Solutions facing all these challenges, including the development, validation and application of WT and WPP models are presented in this Issue.

Keywords

bearing current --- common mode current --- doubly fed induction generators --- permanent magnet synchronous generators --- wind turbine generator --- doubly-fed generator --- converter control --- short-circuit current --- second harmonic component --- low-voltage ride-through (LVRT) field test data --- complex terrain --- terrain-induced turbulence --- turbulence intensity --- LES --- vortex shedding --- frequency control --- wind power integration --- power system stability --- turbulence --- statistical modelling --- Wind Turbine (WT) --- Doubly Fed Induction Generator (DFIG) --- unbalanced grid voltage --- DC-linked voltage control --- Proportional Resonant with Resonant Harmonic Compensator (PR+HC) controller --- Adaptive Proportional Integral (API) control --- power control --- wind turbine near wake --- wind turbine wakes --- wake aerodynamics --- computational fluid dynamics --- rotor aerodynamics --- wind turbine validation --- MEXICO experiment --- wind energy --- model validation --- wind turbine aerodynamics --- wind farms --- wind turbines interaction --- wind farm modeling --- kernel density estimation --- multiple wind farms --- joint probability density --- ordinal optimization --- reactive power capability --- wind power plant --- wind power collection system --- aggregated, modelling --- wind integration studies --- long term voltage stability --- fault-ride through capability --- IEC 61400-27-1 --- Spanish PO 12.3 --- Type 3 wind turbine --- inertia --- wind power --- droop --- primary control --- frequency containment process --- wind integration --- demand response --- ancillary services --- wind turbine nacelle --- lightning electromagnetic pulse (LEMP) --- magnetic field intensity --- shielding mesh --- wake steering --- yaw misalignment --- multi body simulation --- main bearing loads --- rain flow counts --- aeroelasticity --- multi-rotor system --- wind turbine --- computational fluid dynamics (CFD) --- horizontal-axis wind turbine (HAWT) --- permanent-magnet synchronous-generator (PMSG) --- linear quadratic regulator (LQR) --- PI control algorithm --- LQR-PI control --- wind turbine blade --- large-eddy simulation --- turbulence evaluation index --- fatigue damage evaluation index --- DIgSILENT-PowerFactory --- MATLAB --- transient stability --- type 3 wind turbine --- DFIG --- field testing --- full-scale converter --- generic model --- validation --- HAWT --- aerodynamic characteristics --- dynamic yawing process --- near wake --- start-stop yaw velocity --- load frequency control (LFC) --- equivalent input disturbance (EID) --- active disturbance rejection control (ADRC) --- wind --- linear matrix inequalities (LMI) --- dynamic modeling --- grey-box parameter identification --- subspace identification --- recursive least squares --- optimal identification

Listing 1 - 6 of 6
Sort by