Narrow your search

Library

FARO (8)

KU Leuven (8)

LUCA School of Arts (8)

Odisee (8)

Thomas More Kempen (8)

Thomas More Mechelen (8)

UCLL (8)

ULB (8)

ULiège (8)

VIVES (8)

More...

Resource type

book (20)


Language

English (20)


Year
From To Submit

2022 (6)

2021 (12)

2019 (2)

Listing 1 - 10 of 20 << page
of 2
>>
Sort by

Book
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors: --- ---
ISBN: 3038975834 3038975826 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In last few decades, short-term load forecasting (STLF) has been one of the most important research issues for achieving higher efficiency and reliability in power system operation, to facilitate the minimization of its operation cost by providing accurate input to day-ahead scheduling, contingency analysis, load flow analysis, planning, and maintenance of power systems. There are lots of forecasting models proposed for STLF, including traditional statistical models (such as ARIMA, SARIMA, ARMAX, multi-variate regression, Kalman filter, exponential smoothing, and so on) and artificial-intelligence-based models (such as artificial neural networks (ANNs), knowledge-based expert systems, fuzzy theory and fuzzy inference systems, evolutionary computation models, support vector regression, and so on). Recently, due to the great development of evolutionary algorithms (EA) and novel computing concepts (e.g., quantum computing concepts, chaotic mapping functions, and cloud mapping process, and so on), many advanced hybrids with those artificial-intelligence-based models are also proposed to achieve satisfactory forecasting accuracy levels. In addition, combining some superior mechanisms with an existing model could empower that model to solve problems it could not deal with before; for example, the seasonal mechanism from the ARIMA model is a good component to be combined with any forecasting models to help them to deal with seasonal problems.


Book
Short-Term Load Forecasting 2019
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Short-term load forecasting (STLF) plays a key role in the formulation of economic, reliable, and secure operating strategies (planning, scheduling, maintenance, and control processes, among others) for a power system and will be significant in the future. However, there is still much to do in these research areas. The deployment of enabling technologies (e.g., smart meters) has made high-granularity data available for many customer segments and to approach many issues, for instance, to make forecasting tasks feasible at several demand aggregation levels. The first challenge is the improvement of STLF models and their performance at new aggregation levels. Moreover, the mix of renewables in the power system, and the necessity to include more flexibility through demand response initiatives have introduced greater uncertainties, which means new challenges for STLF in a more dynamic power system in the 2030–50 horizon. Many techniques have been proposed and applied for STLF, including traditional statistical models and AI techniques. Besides, distribution planning needs, as well as grid modernization, have initiated the development of hierarchical load forecasting. Analogously, the need to face new sources of uncertainty in the power system is giving more importance to probabilistic load forecasting. This Special Issue deals with both fundamental research and practical application research on STLF methodologies to face the challenges of a more distributed and customer-centered power system.


Book
Short-Term Load Forecasting 2019
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Short-term load forecasting (STLF) plays a key role in the formulation of economic, reliable, and secure operating strategies (planning, scheduling, maintenance, and control processes, among others) for a power system and will be significant in the future. However, there is still much to do in these research areas. The deployment of enabling technologies (e.g., smart meters) has made high-granularity data available for many customer segments and to approach many issues, for instance, to make forecasting tasks feasible at several demand aggregation levels. The first challenge is the improvement of STLF models and their performance at new aggregation levels. Moreover, the mix of renewables in the power system, and the necessity to include more flexibility through demand response initiatives have introduced greater uncertainties, which means new challenges for STLF in a more dynamic power system in the 2030–50 horizon. Many techniques have been proposed and applied for STLF, including traditional statistical models and AI techniques. Besides, distribution planning needs, as well as grid modernization, have initiated the development of hierarchical load forecasting. Analogously, the need to face new sources of uncertainty in the power system is giving more importance to probabilistic load forecasting. This Special Issue deals with both fundamental research and practical application research on STLF methodologies to face the challenges of a more distributed and customer-centered power system.


Book
Short-Term Load Forecasting 2019
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Short-term load forecasting (STLF) plays a key role in the formulation of economic, reliable, and secure operating strategies (planning, scheduling, maintenance, and control processes, among others) for a power system and will be significant in the future. However, there is still much to do in these research areas. The deployment of enabling technologies (e.g., smart meters) has made high-granularity data available for many customer segments and to approach many issues, for instance, to make forecasting tasks feasible at several demand aggregation levels. The first challenge is the improvement of STLF models and their performance at new aggregation levels. Moreover, the mix of renewables in the power system, and the necessity to include more flexibility through demand response initiatives have introduced greater uncertainties, which means new challenges for STLF in a more dynamic power system in the 2030–50 horizon. Many techniques have been proposed and applied for STLF, including traditional statistical models and AI techniques. Besides, distribution planning needs, as well as grid modernization, have initiated the development of hierarchical load forecasting. Analogously, the need to face new sources of uncertainty in the power system is giving more importance to probabilistic load forecasting. This Special Issue deals with both fundamental research and practical application research on STLF methodologies to face the challenges of a more distributed and customer-centered power system.

Keywords

History of engineering & technology --- short-term load forecasting --- demand-side management --- pattern similarity --- hierarchical short-term load forecasting --- feature selection --- weather station selection --- load forecasting --- special days --- regressive models --- electric load forecasting --- data preprocessing technique --- multiobjective optimization algorithm --- combined model --- Nordic electricity market --- electricity demand --- component estimation method --- univariate and multivariate time series analysis --- modeling and forecasting --- deep learning --- wavenet --- long short-term memory --- demand response --- hybrid energy system --- data augmentation --- convolution neural network --- residential load forecasting --- forecasting --- time series --- cubic splines --- real-time electricity load --- seasonal patterns --- Load forecasting --- VSTLF --- bus load forecasting --- DBN --- PSR --- distributed energy resources --- prosumers --- building electric energy consumption forecasting --- cold-start problem --- transfer learning --- multivariate random forests --- random forest --- electricity consumption --- lasso --- Tikhonov regularization --- load metering --- preliminary load --- short term load forecasting --- performance criteria --- power systems --- cost analysis --- day ahead --- feature extraction --- deep residual neural network --- multiple sources --- electricity --- short-term load forecasting --- demand-side management --- pattern similarity --- hierarchical short-term load forecasting --- feature selection --- weather station selection --- load forecasting --- special days --- regressive models --- electric load forecasting --- data preprocessing technique --- multiobjective optimization algorithm --- combined model --- Nordic electricity market --- electricity demand --- component estimation method --- univariate and multivariate time series analysis --- modeling and forecasting --- deep learning --- wavenet --- long short-term memory --- demand response --- hybrid energy system --- data augmentation --- convolution neural network --- residential load forecasting --- forecasting --- time series --- cubic splines --- real-time electricity load --- seasonal patterns --- Load forecasting --- VSTLF --- bus load forecasting --- DBN --- PSR --- distributed energy resources --- prosumers --- building electric energy consumption forecasting --- cold-start problem --- transfer learning --- multivariate random forests --- random forest --- electricity consumption --- lasso --- Tikhonov regularization --- load metering --- preliminary load --- short term load forecasting --- performance criteria --- power systems --- cost analysis --- day ahead --- feature extraction --- deep residual neural network --- multiple sources --- electricity


Book
Advanced Methods of Power Load Forecasting
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint introduces advanced prediction models focused on power load forecasting. Models based on artificial intelligence and more traditional approaches are shown, demonstrating the real possibilities of use to improve prediction in this field. Models of LSTM neural networks, LSTM networks with a SESDA architecture, in even LSTM-CNN are used. On the other hand, multiple seasonal Holt-Winters models with discrete seasonality and the application of the Prophet method to demand forecasting are presented. These models are applied in different circumstances and show highly positive results. This reprint is intended for both researchers related to energy management and those related to forecasting, especially power load.


Book
Advanced Methods of Power Load Forecasting
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint introduces advanced prediction models focused on power load forecasting. Models based on artificial intelligence and more traditional approaches are shown, demonstrating the real possibilities of use to improve prediction in this field. Models of LSTM neural networks, LSTM networks with a SESDA architecture, in even LSTM-CNN are used. On the other hand, multiple seasonal Holt-Winters models with discrete seasonality and the application of the Prophet method to demand forecasting are presented. These models are applied in different circumstances and show highly positive results. This reprint is intended for both researchers related to energy management and those related to forecasting, especially power load.


Book
Advanced Methods of Power Load Forecasting
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint introduces advanced prediction models focused on power load forecasting. Models based on artificial intelligence and more traditional approaches are shown, demonstrating the real possibilities of use to improve prediction in this field. Models of LSTM neural networks, LSTM networks with a SESDA architecture, in even LSTM-CNN are used. On the other hand, multiple seasonal Holt-Winters models with discrete seasonality and the application of the Prophet method to demand forecasting are presented. These models are applied in different circumstances and show highly positive results. This reprint is intended for both researchers related to energy management and those related to forecasting, especially power load.


Book
Applications of Computational Intelligence to Power Systems
Author:
ISBN: 3039217615 3039217607 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electric power systems around the world are changing in terms of structure, operation, management and ownership due to technical, financial, and ideological reasons. Power systems keep on expanding in terms of geographical areas, asset additions, and the penetration of new technologies in generation, transmission, and distribution. The conventional methods for solving the power system design, planning, operation, and control problems have been extensively used for different applications, but these methods suffer from several difficulties, thus providing suboptimal solutions. Computationally intelligent methods can offer better solutions for several conditions and are being widely applied in electrical engineering applications. This Special Issue represents a thorough treatment of computational intelligence from an electrical power system engineer’s perspective. Thorough, well-organised, and up-to-date, it examines in detail some of the important aspects of this very exciting and rapidly emerging technology, including machine learning, particle swarm optimization, genetic algorithms, and deep learning systems. Written in a concise and flowing manner by experts in the area of electrical power systems who have experience in the application of computational intelligence for solving many complex and difficult power system problems, this Special Issue is ideal for professional engineers and postgraduate students entering this exciting field.


Book
Emerging Technologies for the Energy Systems of the Future
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Energy systems are transiting from conventional energy systems to modernized and smart energy systems. This Special Issue covers new advances in the emerging technologies for modern energy systems from both technical and management perspectives. In modern energy systems, an integrated and systematic view of different energy systems, from local energy systems and islands to national and multi-national energy hubs, is important. From the customer perspective, a modern energy system is required to have more intelligent appliances and smart customer services. In addition, customers require the provision of more useful information and control options. Another challenge for the energy systems of the future is the increased penetration of renewable energy sources. Hence, new operation and planning tools are required for hosting renewable energy sources as much as possible.


Book
Situation Awareness for Smart Distribution Systems
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, the global climate has become variable due to intensification of the greenhouse effect, and natural disasters are frequently occurring, which poses challenges to the situation awareness of intelligent distribution networks. Aside from the continuous grid connection of distributed generation, energy storage and new energy generation not only reduces the power supply pressure of distribution network to a certain extent but also brings new consumption pressure and load impact. Situation awareness is a technology based on the overall dynamic insight of environment and covering perception, understanding, and prediction. Such means have been widely used in security, intelligence, justice, intelligent transportation, and other fields and gradually become the research direction of digitization and informatization in the future. We hope this Special Issue represents a useful contribution. We present 10 interesting papers that cover a wide range of topics all focused on problems and solutions related to situation awareness for smart distribution systems. We sincerely hope the papers included in this Special Issue will inspire more researchers to further develop situation awareness for smart distribution systems. We strongly believe that there is a need for more work to be carried out, and we hope this issue provides a useful open-access platform for the dissemination of new ideas.

Listing 1 - 10 of 20 << page
of 2
>>
Sort by