Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Coal gasification --- Fuels(Liquid-)production from coal-derived synthes --- Coal liquefaction --- Shale oil --- Oil from oil sands --- Synfuels refining --- Fuels(Synthetic-) --- Synfuels upgrading --- Synthetic fuels
Choose an application
With the benefit of hindsight, this paper provides a fresh and comprehensive look at the causes of the 2014-16 collapse in oil prices and its impact on the global economy. It disentangles the contribution of supply and demand factors, assesses the impact on activity in oil exporters and oil importers, and reviews policy responses in these countries. The main conclusions are: (i) the decline in oil prices was predominantly triggered by supply factors, particularly rapid efficiency gains in U.S. shale oil production, but softening demand prospects played a substantial role as well; (ii) the short-term benefits of falling oil prices for the global economy were muted by economic rebalancing in China, a low responsiveness of activity in other oil-importing emerging markets, and a sharp slowdown in U.S. investment as energy sector activity declined and a the U.S. dollar strengthened; (iii) oil exporters with flexible exchange rates and relatively large fiscal buffers fared better than others, but most oil-exporting economies still face significant policy challenges as their medium-term prospects for growth and fiscal revenues have deteriorated; (iv) fundamental changes in the oil market make a return to the oil price levels of the early 2010s unlikely, pointing to the need for accelerated reforms, particularly among oil exporters.
Access of Poor to Social Services --- Disability --- Diversification --- Economic Adjustment and Lending --- Economic Assistance --- Energy --- Energy and Environment --- Energy Demand --- Energy Policies and Economics --- Energy Subsidies --- Fiscal Policy --- Inflation --- Macroeconomic Management --- Macroeconomics and Economic Growth --- Monetary Policy --- Oil Exporters --- Oil Importers --- Oil Prices --- OPEC --- Poverty Reduction --- Public Sector Development --- Services and Transfers to Poor --- Shale Oil --- Social Protections and Labor
Choose an application
This multidisciplinary book covers a wide range of topics addressing critical challenges for advancing the understanding and management of shale oil and shale gas resources. Both fundamental and practical issues are considered. By covering a variety of technical topics, we aim to contribute to building a more integrated perspective to meet major challenges faced by shale resources. Combining complementary techniques and examining multiple sources of data serve to advance our current knowledge about these unconventional reservoirs. The book is a result of interdisciplinary and collaborative work. The content includes contributions authored by active scientists with ample expertise in their fields. Each article was carefully peer-reviewed by researchers, and the editorial process was performed by an experienced team of Senior Editors, Guest Editors, Topic Editors, and Editorial Board Members. The first part is devoted to fundamental topics, mostly investigated on the laboratory scale. The second part elaborates on larger scales (at near-wellbore and field scales). Finally, two related technologies, which could be relevant for shale plays applications, are presented. With this Special Issue, we provide a channel for sharing information and lessons learned collected from different plays and from different disciplines.
fracture mode --- Multi Finger Caliper --- sensitivity analysis --- shale oil --- borehole stability --- shale reservoir --- XRD --- XRF --- shear deformation --- optimization --- DSC --- EDX --- imbibition --- oil shale --- shale --- pore size distribution --- seismic wavefield --- unconventional --- fracturing fluid --- shale gas reservoir --- elastomer seal --- oil production --- leaching --- elemental analysis --- Chang 7 reservoir --- shale reservoirs --- Wufeng-Longmaxi shale --- TGA --- fracturing --- solid-liquid extraction --- fuling gas field --- Niutitang formation --- isolated organic matter --- SEM --- safety levels of activity --- well integrity --- flowback fluid --- osmotic hydration --- anisotropy --- surface hydration --- ionic stabilizer --- quantitative evaluation --- tight oil recovery --- FTIR --- fluid-solid-heat coupling --- liner hanger --- dynamic crack initiation toughness --- Jordan --- numerical simulation --- organic matter pores --- shale drilling fluid --- finite element analysis --- multistage fracturing --- well --- negative extreme swelling ratio --- volume fracturing --- contact pressure --- NSCB specimen
Choose an application
This book focuses on the latest progress in unconventional oil and gas (such as coalbed methane, shale gas, tight gas, heavy oil, hydrate, etc.) exploration and development, including reservoir characterization, gas origin and storage, accumulation geology, hydrocarbon generation evolution, fracturing technology, enhanced oil recovery, etc. Some new methods are proposed to improve the gas extraction in coal seams, characterize the relative permeability of reservoirs, improve the heat control effect of hydrate-bearing sediment, improve the development efficiency of heavy oil, increase fracturing effectiveness in tight reservoirs, etc.
Research & information: general --- genesis of coalbed methane --- pore-fracture system --- storage and seepage space --- Baode block --- shale gas --- flowback --- big-data analysis --- horizontal well --- fracturing fluids --- Ordos Basin --- low-permeability tight sandstone gas reservoir --- multistage fracturing --- comprehensive productivity impact index --- Junggar Basin --- Jimsar Depression --- shale oil --- thermal simulation --- source rock evaluation --- hydrocarbon generation evolution --- different CBM geology --- middle and high rank coal --- tectonism and sedimentation --- enrichment and high yield model --- exploration and development strategy --- low-rank coal --- biogenic methane --- geological factor --- accumulation --- production --- gas extraction --- overburden movement --- expansion deformation --- effective pressure relief range --- relative permeability --- high waterflooding PVs --- numerical simulation --- physical simulation --- microencapsulated phase-change materials --- heat control --- temperature sensitivity --- cementing --- hydration heat --- natural gas hydrate-bearing sediment --- heavy oil --- nonhydrocarbon gas --- steam flooding --- reservoir adaptability --- Huaibei coalfield --- tectonic evolution --- gas occurrence --- multiple-level tectonic control --- coalbed methane --- sandstone --- permeability --- pore characteristics --- permeability stress sensitivity --- Jixi Basin
Choose an application
This book focuses on the applications of Power Electronics Converters in smart grids and renewable energy systems. The topics covered include methods to CO2 emission control, schemes for electric vehicle charging, reliable renewable energy forecasting methods, and various power electronics converters. The converters include the quasi neutral point clamped inverter, MPPT algorithms, the bidirectional DC-DC converter, and the push–pull converter with a fuzzy logic controller.
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- allied in-situ injection and production (AIIP) --- CO2 huff and puff --- shale oil reservoirs --- enhanced oil recovery --- renewable energy sources --- forecasting --- Weibull distribution --- neural networks --- optimal economic dispatch --- particle swarm optimization --- distribution network (DN) --- doubly-fed induction generator (DFIG) --- feeder automation (FA) --- compatibility --- adaptive control strategy (ACS) --- coordination technology --- air-cooled condenser --- mechanical draft wet-cooling towers --- hot recirculation rate --- complex building environment --- numerical simulation --- Neutral Point Clamped Z-Source Inverter (NPCZSI) --- shoot-through duty ratio --- modulation index --- voltage gain --- power quality --- dynamic modeling --- DC-DC converter --- electric vehicle (EV) --- charge pump capacitor --- fuzzy logic control --- maximum power point tracking --- photovoltaic --- push pull converter --- off-grid voltage source inverter --- medium voltage distribution network --- switch station --- electric vehicle --- DC–DC converter --- reconfiguration --- orderly charging --- grey wolf optimizer --- electrical harmonics --- harmonic estimation --- total harmonic distortion --- battery energy storage system --- third-harmonic current injection --- high efficiency --- active damping
Choose an application
This book focuses on the applications of Power Electronics Converters in smart grids and renewable energy systems. The topics covered include methods to CO2 emission control, schemes for electric vehicle charging, reliable renewable energy forecasting methods, and various power electronics converters. The converters include the quasi neutral point clamped inverter, MPPT algorithms, the bidirectional DC-DC converter, and the push–pull converter with a fuzzy logic controller.
allied in-situ injection and production (AIIP) --- CO2 huff and puff --- shale oil reservoirs --- enhanced oil recovery --- renewable energy sources --- forecasting --- Weibull distribution --- neural networks --- optimal economic dispatch --- particle swarm optimization --- distribution network (DN) --- doubly-fed induction generator (DFIG) --- feeder automation (FA) --- compatibility --- adaptive control strategy (ACS) --- coordination technology --- air-cooled condenser --- mechanical draft wet-cooling towers --- hot recirculation rate --- complex building environment --- numerical simulation --- Neutral Point Clamped Z-Source Inverter (NPCZSI) --- shoot-through duty ratio --- modulation index --- voltage gain --- power quality --- dynamic modeling --- DC-DC converter --- electric vehicle (EV) --- charge pump capacitor --- fuzzy logic control --- maximum power point tracking --- photovoltaic --- push pull converter --- off-grid voltage source inverter --- medium voltage distribution network --- switch station --- electric vehicle --- DC–DC converter --- reconfiguration --- orderly charging --- grey wolf optimizer --- electrical harmonics --- harmonic estimation --- total harmonic distortion --- battery energy storage system --- third-harmonic current injection --- high efficiency --- active damping
Choose an application
This book focuses on the applications of Power Electronics Converters in smart grids and renewable energy systems. The topics covered include methods to CO2 emission control, schemes for electric vehicle charging, reliable renewable energy forecasting methods, and various power electronics converters. The converters include the quasi neutral point clamped inverter, MPPT algorithms, the bidirectional DC-DC converter, and the push–pull converter with a fuzzy logic controller.
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- allied in-situ injection and production (AIIP) --- CO2 huff and puff --- shale oil reservoirs --- enhanced oil recovery --- renewable energy sources --- forecasting --- Weibull distribution --- neural networks --- optimal economic dispatch --- particle swarm optimization --- distribution network (DN) --- doubly-fed induction generator (DFIG) --- feeder automation (FA) --- compatibility --- adaptive control strategy (ACS) --- coordination technology --- air-cooled condenser --- mechanical draft wet-cooling towers --- hot recirculation rate --- complex building environment --- numerical simulation --- Neutral Point Clamped Z-Source Inverter (NPCZSI) --- shoot-through duty ratio --- modulation index --- voltage gain --- power quality --- dynamic modeling --- DC-DC converter --- electric vehicle (EV) --- charge pump capacitor --- fuzzy logic control --- maximum power point tracking --- photovoltaic --- push pull converter --- off-grid voltage source inverter --- medium voltage distribution network --- switch station --- electric vehicle --- DC–DC converter --- reconfiguration --- orderly charging --- grey wolf optimizer --- electrical harmonics --- harmonic estimation --- total harmonic distortion --- battery energy storage system --- third-harmonic current injection --- high efficiency --- active damping --- allied in-situ injection and production (AIIP) --- CO2 huff and puff --- shale oil reservoirs --- enhanced oil recovery --- renewable energy sources --- forecasting --- Weibull distribution --- neural networks --- optimal economic dispatch --- particle swarm optimization --- distribution network (DN) --- doubly-fed induction generator (DFIG) --- feeder automation (FA) --- compatibility --- adaptive control strategy (ACS) --- coordination technology --- air-cooled condenser --- mechanical draft wet-cooling towers --- hot recirculation rate --- complex building environment --- numerical simulation --- Neutral Point Clamped Z-Source Inverter (NPCZSI) --- shoot-through duty ratio --- modulation index --- voltage gain --- power quality --- dynamic modeling --- DC-DC converter --- electric vehicle (EV) --- charge pump capacitor --- fuzzy logic control --- maximum power point tracking --- photovoltaic --- push pull converter --- off-grid voltage source inverter --- medium voltage distribution network --- switch station --- electric vehicle --- DC–DC converter --- reconfiguration --- orderly charging --- grey wolf optimizer --- electrical harmonics --- harmonic estimation --- total harmonic distortion --- battery energy storage system --- third-harmonic current injection --- high efficiency --- active damping
Choose an application
Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.
karst carbonate reservoir --- fracture compressibility --- enhanced gas recovery --- cost of electricity (COE) --- microstructure --- permeability --- CO2 permeability --- ammonia --- shale oil --- process simulation --- aquifer support --- spatiotemporal characteristics --- semi-analytical solution --- injection orientation --- CO2 diffusion --- wellbore temperature --- fluid front kinetics --- nest of tubes --- supercritical CO2 --- multiple parallel fractures --- multifractal theory --- real-scale --- techno-economic model --- fractal --- inter-well connectivity --- apparent permeability --- heat transfer --- porous media --- multiple structural units (MSU) --- coupled heat conduction and advection --- diffusion --- bottom-hole pressure --- tight reservoir --- ventilation --- surface diffusion --- unsteady process --- underground coal gasification (UCG) --- dynamic crack tip --- mercury intrusion porosimetry --- energy conservation analysis --- methanol --- comprehensive heat transfer model --- pressure fluctuations --- production optimization --- numerical simulation --- percolation model --- rheology --- drilling --- AE energy --- pipeline network --- natural gas --- huff-‘n-puff --- cement --- viscosity --- mathematical modeling --- enhanced geothermal systems --- cement slurries --- yield stress --- non-Newtonian fluids --- capacitance-resistance model --- thixotropy --- conductivity --- enhanced oil recovery --- leakage and overflow --- geothermal --- coal and rock fracture --- impact pressure --- computational fluid dynamics (CFD) --- GSHP (ground source heat pump) --- pore size distribution --- Knudsen diffusion --- hydraulic fracturing --- efficient simulation --- constitutive relations --- electricity generation --- fractal theory --- pore structure --- complex fracture network --- sloshing --- cost-effective --- slippage effect --- dynamic hydraulic-fracturing experiments --- critical porosity --- fracture uncertainty --- carbon capture and utilization (CCU) --- tube bundle model --- continuity/momentum and energy equations coupled --- main gas pipeline --- Coal excavation --- longitudinal dispersion coefficient --- computational fluid dynamic (CFD) --- flowback --- fracture simulation --- highly viscous fluids --- carbon capture and storage (CCS) --- energy dissipation --- economics --- particles model --- variable viscosity --- multi-pressure system --- frequency conversion technology (FCT) --- three-dimensional numerical simulation --- tight oil reservoirs --- multiphase flow --- methane removal --- Navier-Stokes equations
Listing 1 - 8 of 8 |
Sort by
|