Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2021 (6)

2019 (1)

Listing 1 - 7 of 7
Sort by

Book
Seedling Production and Field Performance of Seedlings
Authors: ---
ISBN: 3039212567 3039212559 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rapid establishment of seedlings in forest regeneration or afforestation sites after planting is a prerequisite for a successful reforestation. Seedling survival after outplanting can be improved by using high-quality seedling material. Seedling quality consists of several features, such as genetic source, morphological properties, nutritional status, stress resistance, and vitality of the seedlings. Field performance of the seedlings is a complex process which can be affected by many nursery and silvicultural practices. Nursery cultural practices strongly affect seedling quality, which is generally at its highest level during the growth period at the nursery. Afterwards, when the seedlings are transported from the nursery to the planting site (including seedling storage, handling, shipping, and planting practices), the quality of seedlings can only remain the same or decline. To ensure successful regeneration, it is important to produce seedlings that retain their high quality until planting, and to establish them quickly in the forest regeneration site.


Book
Advances in Surface Modification and Treatment of Wood
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biopolymers including natural (e.g., polysaccharides, proteins, gums, natural rubbers, bacterial polymers), synthetic (e.g., aliphatic polyesters and polyphosphoester), and biocomposites are of paramount interest in regenerative medicine, due to their availability, processability, and low toxicity. Moreover, the structuration of biopolymer-based materials at the nano- and microscale along with their chemical properties are crucial in the engineering of advanced carriers for drug products. Finally, combination products including or based on biopolymers for controlled drug release offer a powerful solution to improve the tissue integration and biological response of these materials. Understanding the drug delivery mechanisms, efficiency, and toxicity of such systems may be useful for regenerative medicine and pharmaceutical technology. The main aim of the Special Issue on “Biopolymers in Drug Delivery and Regenerative Medicine” is to gather recent findings and current advances on biopolymer research for biomedical applications, particularly in regenerative medicine, wound healing, and drug delivery. Contributions to this issue can be as original research or review articles and may cover all aspects of biopolymer research, ranging from the chemical synthesis and characterization of modified biopolymers, their processing in different morphologies and hierarchical structures, as well as their assessment for biomedical uses.


Book
Advances in Surface Modification and Treatment of Wood
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biopolymers including natural (e.g., polysaccharides, proteins, gums, natural rubbers, bacterial polymers), synthetic (e.g., aliphatic polyesters and polyphosphoester), and biocomposites are of paramount interest in regenerative medicine, due to their availability, processability, and low toxicity. Moreover, the structuration of biopolymer-based materials at the nano- and microscale along with their chemical properties are crucial in the engineering of advanced carriers for drug products. Finally, combination products including or based on biopolymers for controlled drug release offer a powerful solution to improve the tissue integration and biological response of these materials. Understanding the drug delivery mechanisms, efficiency, and toxicity of such systems may be useful for regenerative medicine and pharmaceutical technology. The main aim of the Special Issue on “Biopolymers in Drug Delivery and Regenerative Medicine” is to gather recent findings and current advances on biopolymer research for biomedical applications, particularly in regenerative medicine, wound healing, and drug delivery. Contributions to this issue can be as original research or review articles and may cover all aspects of biopolymer research, ranging from the chemical synthesis and characterization of modified biopolymers, their processing in different morphologies and hierarchical structures, as well as their assessment for biomedical uses.


Book
Advances in Surface Modification and Treatment of Wood
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biopolymers including natural (e.g., polysaccharides, proteins, gums, natural rubbers, bacterial polymers), synthetic (e.g., aliphatic polyesters and polyphosphoester), and biocomposites are of paramount interest in regenerative medicine, due to their availability, processability, and low toxicity. Moreover, the structuration of biopolymer-based materials at the nano- and microscale along with their chemical properties are crucial in the engineering of advanced carriers for drug products. Finally, combination products including or based on biopolymers for controlled drug release offer a powerful solution to improve the tissue integration and biological response of these materials. Understanding the drug delivery mechanisms, efficiency, and toxicity of such systems may be useful for regenerative medicine and pharmaceutical technology. The main aim of the Special Issue on “Biopolymers in Drug Delivery and Regenerative Medicine” is to gather recent findings and current advances on biopolymer research for biomedical applications, particularly in regenerative medicine, wound healing, and drug delivery. Contributions to this issue can be as original research or review articles and may cover all aspects of biopolymer research, ranging from the chemical synthesis and characterization of modified biopolymers, their processing in different morphologies and hierarchical structures, as well as their assessment for biomedical uses.


Book
Relationship between Forest Ecophysiology and Environment
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ecophysiological mechanisms underlie plant responses to environmental conditions and the influence these responses have on ecological patterns and processes. In this Special Issue, with a particular interest in the interactions between climate change, environmental disturbance, and functional ecology, experimental observations are described at a range of spatial scales. A modeling framework is used in an effort to relate mechanistic responses to ecosystem functions and services, and link forest ecophysiology and environmental indicators. This Special Issue collects important advances in studying and monitoring plant–environment interactions, covering biogeographic gradients from Mediterranean woodlands to boreal forests and from Alpine mountains to tropical environments.

Keywords

Research & information: general --- Biology, life sciences --- Forestry & related industries --- Leaf δ13C --- Leaf δ15N --- Growth stage --- Environmental factors --- Relative importance --- nitrogen dioxide --- nitrogen metabolism --- photorespiration --- heat dissipation --- excess absorbed light energy --- electron transfer --- photochemical efficiency --- altitude --- non-structural carbohydrates --- nutrients --- ontogeny --- Pinus cembra L. --- Larix decidua Mill --- boreal forest --- leaf temperature --- photosynthesis --- water availability --- leaf thermal damage --- thermoregulation --- endangered --- Sonneratia × hainanensis --- reproductive system --- seed germination --- light --- temperature --- salinity --- Cinnamomum migao --- autotoxicity --- seedling growth --- soil substrate --- soil enzyme --- soil fungi --- TreeSonic --- MOEd --- forest productivity --- dendrochronology --- recruitment period --- Aspromonte National Park --- Sessile oak --- deciduous forest --- carbon sequestration --- wood density --- allometry --- functional traits --- climate niches --- Malus baccata --- MbERF11 --- cold stress --- salt stress --- transgenic plant --- dendrometer --- stem circumference changes --- climate response --- Mediterranean --- Pinus nigra --- Pinus pinaster --- ontogenetic phases --- adaptive strategies --- leaf functional traits --- light environment --- canopy tree species --- carbon isotopes --- climate change --- respiration --- discrimination --- mixed forest --- keeling plot --- branch lifespan --- shoot lifespan --- stem lifespan --- branch shedding --- shoot shedding --- stem shedding --- canopy --- crown development --- tree architecture --- light foraging --- phenotypic plasticity --- shade tolerance --- shade acclimation --- light acclimation --- light regime --- sunfleck --- leaf thickness --- leaf angle --- leaf three-dimensional structure --- n/a


Book
Relationship between Forest Ecophysiology and Environment
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ecophysiological mechanisms underlie plant responses to environmental conditions and the influence these responses have on ecological patterns and processes. In this Special Issue, with a particular interest in the interactions between climate change, environmental disturbance, and functional ecology, experimental observations are described at a range of spatial scales. A modeling framework is used in an effort to relate mechanistic responses to ecosystem functions and services, and link forest ecophysiology and environmental indicators. This Special Issue collects important advances in studying and monitoring plant–environment interactions, covering biogeographic gradients from Mediterranean woodlands to boreal forests and from Alpine mountains to tropical environments.

Keywords

Research & information: general --- Biology, life sciences --- Forestry & related industries --- Leaf δ13C --- Leaf δ15N --- Growth stage --- Environmental factors --- Relative importance --- nitrogen dioxide --- nitrogen metabolism --- photorespiration --- heat dissipation --- excess absorbed light energy --- electron transfer --- photochemical efficiency --- altitude --- non-structural carbohydrates --- nutrients --- ontogeny --- Pinus cembra L. --- Larix decidua Mill --- boreal forest --- leaf temperature --- photosynthesis --- water availability --- leaf thermal damage --- thermoregulation --- endangered --- Sonneratia × hainanensis --- reproductive system --- seed germination --- light --- temperature --- salinity --- Cinnamomum migao --- autotoxicity --- seedling growth --- soil substrate --- soil enzyme --- soil fungi --- TreeSonic --- MOEd --- forest productivity --- dendrochronology --- recruitment period --- Aspromonte National Park --- Sessile oak --- deciduous forest --- carbon sequestration --- wood density --- allometry --- functional traits --- climate niches --- Malus baccata --- MbERF11 --- cold stress --- salt stress --- transgenic plant --- dendrometer --- stem circumference changes --- climate response --- Mediterranean --- Pinus nigra --- Pinus pinaster --- ontogenetic phases --- adaptive strategies --- leaf functional traits --- light environment --- canopy tree species --- carbon isotopes --- climate change --- respiration --- discrimination --- mixed forest --- keeling plot --- branch lifespan --- shoot lifespan --- stem lifespan --- branch shedding --- shoot shedding --- stem shedding --- canopy --- crown development --- tree architecture --- light foraging --- phenotypic plasticity --- shade tolerance --- shade acclimation --- light acclimation --- light regime --- sunfleck --- leaf thickness --- leaf angle --- leaf three-dimensional structure --- n/a


Book
Relationship between Forest Ecophysiology and Environment
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ecophysiological mechanisms underlie plant responses to environmental conditions and the influence these responses have on ecological patterns and processes. In this Special Issue, with a particular interest in the interactions between climate change, environmental disturbance, and functional ecology, experimental observations are described at a range of spatial scales. A modeling framework is used in an effort to relate mechanistic responses to ecosystem functions and services, and link forest ecophysiology and environmental indicators. This Special Issue collects important advances in studying and monitoring plant–environment interactions, covering biogeographic gradients from Mediterranean woodlands to boreal forests and from Alpine mountains to tropical environments.

Keywords

Leaf δ13C --- Leaf δ15N --- Growth stage --- Environmental factors --- Relative importance --- nitrogen dioxide --- nitrogen metabolism --- photorespiration --- heat dissipation --- excess absorbed light energy --- electron transfer --- photochemical efficiency --- altitude --- non-structural carbohydrates --- nutrients --- ontogeny --- Pinus cembra L. --- Larix decidua Mill --- boreal forest --- leaf temperature --- photosynthesis --- water availability --- leaf thermal damage --- thermoregulation --- endangered --- Sonneratia × hainanensis --- reproductive system --- seed germination --- light --- temperature --- salinity --- Cinnamomum migao --- autotoxicity --- seedling growth --- soil substrate --- soil enzyme --- soil fungi --- TreeSonic --- MOEd --- forest productivity --- dendrochronology --- recruitment period --- Aspromonte National Park --- Sessile oak --- deciduous forest --- carbon sequestration --- wood density --- allometry --- functional traits --- climate niches --- Malus baccata --- MbERF11 --- cold stress --- salt stress --- transgenic plant --- dendrometer --- stem circumference changes --- climate response --- Mediterranean --- Pinus nigra --- Pinus pinaster --- ontogenetic phases --- adaptive strategies --- leaf functional traits --- light environment --- canopy tree species --- carbon isotopes --- climate change --- respiration --- discrimination --- mixed forest --- keeling plot --- branch lifespan --- shoot lifespan --- stem lifespan --- branch shedding --- shoot shedding --- stem shedding --- canopy --- crown development --- tree architecture --- light foraging --- phenotypic plasticity --- shade tolerance --- shade acclimation --- light acclimation --- light regime --- sunfleck --- leaf thickness --- leaf angle --- leaf three-dimensional structure --- n/a

Listing 1 - 7 of 7
Sort by