Listing 1 - 10 of 12 | << page >> |
Sort by
|
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Choose an application
natural disasters --- climate change and global warming --- disaster management --- early warning systems --- pollution --- geographic information systems (gis) and remote sensing applications --- Natural disasters --- Environmental engineering --- Environmental risk assessment --- Environmental risk assessment. --- Environmental engineering. --- Research --- Research. --- Environmental control --- Environmental effects --- Environmental stresses --- Engineering --- Environmental health --- Environmental protection --- Pollution --- Sustainable engineering --- Risk assessment --- Precautionary principle --- Natural calamities --- Disasters
Choose an application
Artificial intelligence --- Smart structures --- Artificial intelligence. --- Smart structures. --- Adaptive structures --- Intelligent structures --- Structural control (Engineering) --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Bionics --- Cognitive science --- Digital computer simulation --- Electronic data processing --- Logic machines --- Machine theory --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Life Sciences --- General and Others --- smart sensing --- intelligent sensing --- smart systems --- smart sensing applications
Choose an application
Since their discovery, multi-walled carbon nanotubes (MWCNTs) have received tremendous attention due to their unique electrical, optical, physical, chemical, and mechanical properties. Remarkable advances have been made in the synthesis, purification, structural characterization, functionalization, and application of MWCNTs. Their particular characteristics make them well suited for a plethora of applications in a number of fields, namely nanoelectronics, nanofluids, energy management, (electro)catalysis, materials science, construction of (bio)sensors based on different detection schemes, multifunctional nanoprobes for biomedical imaging, and sorbents for sample preparation or removal of contaminants from wastewater. They are also useful as anti-bacterial agents, drug delivery nanocarriers, etc. The current relevant application areas are countless. This Special Issue presents original research and review articles that address advances, trends, challenges, and future perspectives regarding synthetic routes, structural features, properties, behaviors, and industrial or scientific applications of MWCNTs in established and emerging areas.
graphene oxide --- n/a --- Multi-Walled Carbon Nanotube (MWCNT) --- elution --- gold nanoparticles --- MHD --- heck reaction --- drug delivery --- carbon-nanotubes --- water based nanofluid --- zeolitic imidazolate framework --- Ionic liquid --- electroanalysis --- curved stretching sheet --- multiwalled carbon nanotubes --- lubricating oil additives --- hydrophobic drugs --- agricultural irrigation water --- polarity --- cerium oxide --- adsorption --- electrical properties --- non-linear thermal radiation --- electrochemical properties --- nanomaterials --- radar absorbing materials --- chloride diffusion --- RAFT polymerization --- synthesis methods --- gold(III) --- mechanical properties --- dissolution rate --- carbon materials --- electrochemical sensors --- magnetic solid phase extraction --- silicone rubber --- Single-Walled Carbon Nanotube (SWCNT) --- Pd-CNT nanohybrids --- kinetics --- nonylphenol --- boundary layer --- Casson model --- sensing applications --- organochlorine pesticides --- composites --- multi-wall carbon nanotube (MWCNT) --- polymeric composites --- carbon nanotubes --- structural --- azide-alkyne click chemistry --- functionalized carbon nanotubes --- heat generation --- EMI shielding --- gold(I) --- cement mortars --- semi-homogeneous catalysis --- functionalized CNTs --- nanomedicine --- multi-walled carbon nanotubes --- numerical solution --- PMMA --- HAM --- complex permittivity --- thermal radiation --- stretching sheet
Choose an application
Optical gas sensing is one of the fastest developing research areas in laser spectroscopy. Continuous development of new coherent light sources operating especially in the Mid-IR spectral band (QCL—Quantum Cascade Lasers, ICL—Interband Cascade Lasers, OPO—Optical Parametric Oscillator, DFG—Difference Frequency Generation, optical frequency combs, etc.) stimulates new, sophisticated methods and technological solutions in this area. The development of clever techniques in gas detection based on new mechanisms of sensing (photoacoustic, photothermal, dispersion, etc.) supported by advanced applied electronics and huge progress in signal processing allows us to introduce more sensitive, broader-band and miniaturized optical sensors. Additionally, the substantial development of fast and sensitive photodetectors in MIR and FIR is of great support to progress in gas sensing. Recent material and technological progress in the development of hollow-core optical fibers allowing low-loss transmission of light in both Near- and Mid-IR has opened a new route for obtaining the low-volume, long optical paths that are so strongly required in laser-based gas sensors, leading to the development of a novel branch of laser-based gas detectors. This Special Issue summarizes the most recent progress in the development of optical sensors utilizing novel materials and laser-based gas sensing techniques.
Technology: general issues --- History of engineering & technology --- laser flow meter --- Pitot tube --- flow speed --- time of flight --- dilution method --- flow simulation --- flow turbulence --- gas sensing applications --- MEMS --- gas sensor --- photoacoustics --- cantilever --- capacitive detection --- analytic model --- infrared imaging --- multispectral and hyperspectral imaging --- air pollution monitoring --- remote sensing and sensors --- spectroscopy --- fourier transform --- image processing --- laser gas analyzer --- flux measurement --- eddy covariance method --- derivative absorption spectroscopy --- gas sensors --- antiresonant hollow core fibers --- laser spectroscopy --- wavelength modulation spectroscopy --- tunable diode laser absorption spectroscopy --- photothermal spectroscopy --- photoacoustic spectroscopy --- fiber gas sensors --- mid-infrared --- quantum cascade detector --- high-speed operation --- heterodyne detection --- high-resolution spectroscopy --- isotopic ratio --- frequency comb --- Vernier spectroscopy --- refractometry --- pressure --- short-term performance --- Fabry–Perot cavity --- gas modulation --- modulation techniques --- metrology --- integrated sensors --- waveguides --- absorption spectroscopy --- Raman spectroscopy --- gas sensing --- femtosecond laser micromachining --- microchannel fabrication --- microstructured fibers --- photoacoustic --- pressure transducer --- wafer-level --- CO2 --- combined NIR/MIR laser absorption --- laser multiplexing in a mid-IR single-mode fiber --- simultaneous multispecies (CO, CO2, H2O) in situ measurements
Choose an application
Optical gas sensing is one of the fastest developing research areas in laser spectroscopy. Continuous development of new coherent light sources operating especially in the Mid-IR spectral band (QCL—Quantum Cascade Lasers, ICL—Interband Cascade Lasers, OPO—Optical Parametric Oscillator, DFG—Difference Frequency Generation, optical frequency combs, etc.) stimulates new, sophisticated methods and technological solutions in this area. The development of clever techniques in gas detection based on new mechanisms of sensing (photoacoustic, photothermal, dispersion, etc.) supported by advanced applied electronics and huge progress in signal processing allows us to introduce more sensitive, broader-band and miniaturized optical sensors. Additionally, the substantial development of fast and sensitive photodetectors in MIR and FIR is of great support to progress in gas sensing. Recent material and technological progress in the development of hollow-core optical fibers allowing low-loss transmission of light in both Near- and Mid-IR has opened a new route for obtaining the low-volume, long optical paths that are so strongly required in laser-based gas sensors, leading to the development of a novel branch of laser-based gas detectors. This Special Issue summarizes the most recent progress in the development of optical sensors utilizing novel materials and laser-based gas sensing techniques.
laser flow meter --- Pitot tube --- flow speed --- time of flight --- dilution method --- flow simulation --- flow turbulence --- gas sensing applications --- MEMS --- gas sensor --- photoacoustics --- cantilever --- capacitive detection --- analytic model --- infrared imaging --- multispectral and hyperspectral imaging --- air pollution monitoring --- remote sensing and sensors --- spectroscopy --- fourier transform --- image processing --- laser gas analyzer --- flux measurement --- eddy covariance method --- derivative absorption spectroscopy --- gas sensors --- antiresonant hollow core fibers --- laser spectroscopy --- wavelength modulation spectroscopy --- tunable diode laser absorption spectroscopy --- photothermal spectroscopy --- photoacoustic spectroscopy --- fiber gas sensors --- mid-infrared --- quantum cascade detector --- high-speed operation --- heterodyne detection --- high-resolution spectroscopy --- isotopic ratio --- frequency comb --- Vernier spectroscopy --- refractometry --- pressure --- short-term performance --- Fabry–Perot cavity --- gas modulation --- modulation techniques --- metrology --- integrated sensors --- waveguides --- absorption spectroscopy --- Raman spectroscopy --- gas sensing --- femtosecond laser micromachining --- microchannel fabrication --- microstructured fibers --- photoacoustic --- pressure transducer --- wafer-level --- CO2 --- combined NIR/MIR laser absorption --- laser multiplexing in a mid-IR single-mode fiber --- simultaneous multispecies (CO, CO2, H2O) in situ measurements
Choose an application
Optical gas sensing is one of the fastest developing research areas in laser spectroscopy. Continuous development of new coherent light sources operating especially in the Mid-IR spectral band (QCL—Quantum Cascade Lasers, ICL—Interband Cascade Lasers, OPO—Optical Parametric Oscillator, DFG—Difference Frequency Generation, optical frequency combs, etc.) stimulates new, sophisticated methods and technological solutions in this area. The development of clever techniques in gas detection based on new mechanisms of sensing (photoacoustic, photothermal, dispersion, etc.) supported by advanced applied electronics and huge progress in signal processing allows us to introduce more sensitive, broader-band and miniaturized optical sensors. Additionally, the substantial development of fast and sensitive photodetectors in MIR and FIR is of great support to progress in gas sensing. Recent material and technological progress in the development of hollow-core optical fibers allowing low-loss transmission of light in both Near- and Mid-IR has opened a new route for obtaining the low-volume, long optical paths that are so strongly required in laser-based gas sensors, leading to the development of a novel branch of laser-based gas detectors. This Special Issue summarizes the most recent progress in the development of optical sensors utilizing novel materials and laser-based gas sensing techniques.
Technology: general issues --- History of engineering & technology --- laser flow meter --- Pitot tube --- flow speed --- time of flight --- dilution method --- flow simulation --- flow turbulence --- gas sensing applications --- MEMS --- gas sensor --- photoacoustics --- cantilever --- capacitive detection --- analytic model --- infrared imaging --- multispectral and hyperspectral imaging --- air pollution monitoring --- remote sensing and sensors --- spectroscopy --- fourier transform --- image processing --- laser gas analyzer --- flux measurement --- eddy covariance method --- derivative absorption spectroscopy --- gas sensors --- antiresonant hollow core fibers --- laser spectroscopy --- wavelength modulation spectroscopy --- tunable diode laser absorption spectroscopy --- photothermal spectroscopy --- photoacoustic spectroscopy --- fiber gas sensors --- mid-infrared --- quantum cascade detector --- high-speed operation --- heterodyne detection --- high-resolution spectroscopy --- isotopic ratio --- frequency comb --- Vernier spectroscopy --- refractometry --- pressure --- short-term performance --- Fabry–Perot cavity --- gas modulation --- modulation techniques --- metrology --- integrated sensors --- waveguides --- absorption spectroscopy --- Raman spectroscopy --- gas sensing --- femtosecond laser micromachining --- microchannel fabrication --- microstructured fibers --- photoacoustic --- pressure transducer --- wafer-level --- CO2 --- combined NIR/MIR laser absorption --- laser multiplexing in a mid-IR single-mode fiber --- simultaneous multispecies (CO, CO2, H2O) in situ measurements
Choose an application
Novel Specialty Optical Fibers and Applications focuses on the latest developments in specialty fiber technology and its applications. The aim of this reprint is to provide an overview of specialty optical fibers in terms of their technological developments and applications. Contributions include:1. Specialty fibers composed of special materials for new functionalities and applications in new spectral windows.2. Hollow-core fiber-based applications.3. Functionalized fibers.4. Structurally engineered fibers.5. Specialty fibers for distributed fiber sensors.6. Specialty fibers for communications.
Technology: general issues --- History of engineering & technology --- optical amplifiers --- doped fiber amplifiers --- near-infrared --- molecular gas spectroscopy --- photothermal spectroscopy --- heterodyne detection --- specialty fiber --- anti-resonant effect --- hollow structure --- sensing applications --- orbital angular momentum --- optical fiber --- fiber mode crosstalk --- vortex mode generator --- fiber optics --- plasmonic gratings --- nanodot --- light collection --- hollow-core fibers --- anti-resonant hollow-core fibers --- tapered fibers --- fiber gas lasers --- fiber end cap --- SiO2-Au-TiO2 heterostructure --- long-range surface plasmon resonance --- microstructured optical fiber --- fiber sensor --- photonic crystal fibers --- fiber lasers --- stimulated Raman scattering --- gas Raman lasers --- specialty fibers --- Brillouin optical time domain analysis --- BOTDA --- distributed fiber sensor --- photonic crystal fiber --- strain and temperature sensing --- liquid crystal --- dual-core photonic crystal fiber --- polarization beam splitter --- extinction ratio --- polarization filter --- surface plasmon resonance --- gold-coated --- crosstalk --- mid-infrared (mid-IR) --- chalcogenide glasses (ChGs) --- optical microfibers (MFs) --- supercontinuum (SC) --- molecular sensing --- Raman spectroscopy --- capillary-based hollow core fibers --- hollow core photonic crystal fiber --- detection --- distributed acoustic sensing --- DAS --- scattering enhancement fiber --- fiber-optic sensors --- few-mode fiber --- microfiber --- Mach–Zehnder interferometer --- critical wavelength --- multicore fiber --- fiber Bragg grating --- long period grating --- fiber grating sensors --- n/a --- Mach-Zehnder interferometer
Listing 1 - 10 of 12 | << page >> |
Sort by
|