Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2021 (3)

2019 (1)

Listing 1 - 4 of 4
Sort by

Book
Interfacial Dissipative Phenomena in Tribomechanical Systems
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book is a collection of articles on the themes of contact mechanics and non-linear dynamics. In particular, the contribution focus on the mechanisms that lead to interfacial energy dissipation, which is a crucial quantity to determine in order to correctly predict the non-linear dynamic response of mechanical systems. The book is a collection of nine journal papers, among those one editorial, one review paper, and seven articles. The papers consider different dissipative mechanisms, such as Coulomb friction, interfacial adhesion, and viscoelasticity, and study how the system response and stability is influenced by the interfacial interactions. The review paper describes old and recent test rigs for friction and wear measurements, focusing on their performance and range of operability.

Keywords

Technology: general issues --- nonlinear dynamic response --- second harmonics --- experiments --- numerical modelling --- interface stiffness --- adhesion --- roughness --- adhesion enhancement --- JKR model --- Lennard–Jones --- friction testers --- tribometers --- viscoelastic materials --- rubber friction --- tyre --- elbow erosion --- turbulence flow --- gas-solid flow --- corrosion --- numerical simulation --- friction-induced vibrations --- mass-on-moving-belt --- dynamic vibration absorber --- tuned mass damper --- passive vibrations mitigation --- nonlinear dynamics --- basin of attraction --- self-excitation --- bi-stability --- multi-stability --- viscoelasticity --- contact mechanics --- finite element method --- adhesion hysteresis --- rough surfaces --- JKR theory --- friction --- dissipation --- contact nonlinearities --- nonlinear dynamic response --- second harmonics --- experiments --- numerical modelling --- interface stiffness --- adhesion --- roughness --- adhesion enhancement --- JKR model --- Lennard–Jones --- friction testers --- tribometers --- viscoelastic materials --- rubber friction --- tyre --- elbow erosion --- turbulence flow --- gas-solid flow --- corrosion --- numerical simulation --- friction-induced vibrations --- mass-on-moving-belt --- dynamic vibration absorber --- tuned mass damper --- passive vibrations mitigation --- nonlinear dynamics --- basin of attraction --- self-excitation --- bi-stability --- multi-stability --- viscoelasticity --- contact mechanics --- finite element method --- adhesion hysteresis --- rough surfaces --- JKR theory --- friction --- dissipation --- contact nonlinearities


Book
Interfacial Dissipative Phenomena in Tribomechanical Systems
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book is a collection of articles on the themes of contact mechanics and non-linear dynamics. In particular, the contribution focus on the mechanisms that lead to interfacial energy dissipation, which is a crucial quantity to determine in order to correctly predict the non-linear dynamic response of mechanical systems. The book is a collection of nine journal papers, among those one editorial, one review paper, and seven articles. The papers consider different dissipative mechanisms, such as Coulomb friction, interfacial adhesion, and viscoelasticity, and study how the system response and stability is influenced by the interfacial interactions. The review paper describes old and recent test rigs for friction and wear measurements, focusing on their performance and range of operability.


Book
Interfacial Dissipative Phenomena in Tribomechanical Systems
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book is a collection of articles on the themes of contact mechanics and non-linear dynamics. In particular, the contribution focus on the mechanisms that lead to interfacial energy dissipation, which is a crucial quantity to determine in order to correctly predict the non-linear dynamic response of mechanical systems. The book is a collection of nine journal papers, among those one editorial, one review paper, and seven articles. The papers consider different dissipative mechanisms, such as Coulomb friction, interfacial adhesion, and viscoelasticity, and study how the system response and stability is influenced by the interfacial interactions. The review paper describes old and recent test rigs for friction and wear measurements, focusing on their performance and range of operability.


Book
Machining—Recent Advances, Applications and Challenges
Authors: ---
ISBN: 3039213784 3039213776 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue Machining—Recent Advances, Applications and Challenges is intended as a humble collection of some of the hottest topics in machining. The manufacturing industry is a varying and challenging environment where new advances emerge from one day to another. In recent years, new manufacturing procedures have retained increasing attention from the industrial and scientific community. However, machining still remains the key operation to achieve high productivity and precision for high-added value parts. Continuous research is performed, and new ideas are constantly considered. This Special Issue summarizes selected high-quality papers which were submitted, peer-reviewed, and recommended by experts. It covers some (but not only) of the following topics: High performance operations for difficult-to-cut alloys, wrought and cast materials, light alloys, ceramics, etc.; Cutting tools, grades, substrates and coatings. Wear damage; Advanced cooling in machining: Minimum quantity of lubricant, dry or cryogenics; Modelling, focused on the reduction of risks, the process outcome, and to maintain surface integrity; Vibration problems in machines: Active and passive/predictive methods, sources, diagnosis and avoidance; Influence of machining in new concepts of machine–tool, and machine static and dynamic behaviors; Machinability of new composites, brittle and emerging materials; Assisted machining processes by high-pressure, laser, US, and others; Introduction of new analytics and decision making into machining programming. We wish to thank the reviewers and staff from Materials for their comments, advice, suggestions and invaluable support during the development of this Special Issue.

Keywords

in situ estimation --- modeling --- simulation --- variable pitch --- X-ray diffraction --- cutting edge preparation --- plastic zone --- flank milling --- surface roughness --- power consumption --- cutting tool --- fatigue --- additive manufacturing --- optimization --- trochoidal step --- surface topography --- sinusoidal grid --- milling --- desirability approach --- electrochemical discharge machining --- fast simulation --- Inconel 718 --- secondary adhesion wear --- machinability --- hybrid stacks drilling --- cooling rate --- shape memory alloy --- residual stress --- diameter variation --- turning --- computer vision --- workholding --- on-machine monitoring --- chip morphology --- dry-cutting --- turning machine tools --- SACE-drilled hole depth --- residual stresses --- cryogenic machining --- prime machining costs --- PVD Ti0.41Al0.59N/Ti0.55Al0.45N coating --- single point incremental sheet forming --- butt weld joint --- dish angle --- machining characteristic --- DSC test --- segmented diamond blade --- cutting tool wear --- ultra-precision machining --- ceramics --- shape memory effect --- current density --- fractal dimension --- crack growth rate --- drilling --- force–temperature correlation through analytical modeling --- finite element model --- analytic solution --- aluminium --- taguchi method --- multi-objective optimization --- real-time prediction --- Gamma-TiAl --- cutting temperature --- EN 31 steel --- superalloys --- material-removal rate --- glass machining --- corner radius --- thin-wall machining --- vibration --- GPU --- titanium aluminides --- minimum quantity lubrication --- machining temperatures at two deformation zones --- finite element method --- roughness --- slight materials --- high computational efficiency --- dynamic --- adhesive --- heat transfer analysis --- connections --- stability --- vibrations --- trochoidal milling --- magnesium alloys --- specific cutting energy --- laser-assisted machining --- artificial neutral network --- microscopic analysis --- Milling stability --- topography --- weight loss --- modal testing --- sustainable machining --- dry --- damping --- ductile machining --- Inconel® 718 --- modelling --- cutting edge microgeometry --- electropulsing --- PCD --- cutting geometry --- fixture --- artificial neural networks --- spark-assisted chemical engraving --- machining --- specific energy consumption --- heat transfer search algorithm --- material removal rate --- prediction --- CFRP/UNS A92024 --- tool wear --- titanium alloy --- multi-beam laser --- chip compression ratio --- design of experiments --- concrete --- ANN --- titanium --- chatter --- response surface methodology --- machine tool --- superelastic nitinol --- optimal machining conditions --- machine vision --- steel sheet --- cutting process --- fracture mechanism --- self-excitation --- tool insert condition --- induction assisted milling --- hole quality --- GA --- titanium alloys --- microlens array --- parameter identification --- Taguchi method --- weld reinforcement --- slow tool servo --- cutting parameters --- flank super abrasive machining (SAM) --- stiffness properties --- grey relational analysis --- deflection --- computer numerical control --- grain density --- surface grinding --- the cutting force components --- Huber–Mises stress --- WEDM

Listing 1 - 4 of 4
Sort by