Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Water is indispensable to the functioning of most known life forms, and good water quality is essential to human health, social and economic development, and ecosystem functioning. Nonetheless, population growth has been leading to the degradation and depletion of fresh water resources. Under these circumstances, ensuring sufficient and safe water supplies for everyone is one of the Sustainable Development Goals (SDGs) set by the United Nations General Assembly in 2015 for the year 2030. For this goal to be achieved, the development and implementation of appropriate and efficient wastewater treatments that allow us to reduce water pollution is a major challenge.In view of the relevant contribution that polymers and polymeric materials may have in the conservation of the aquatic environment, namely by their application in wastewater treatment, original research and review papers on “Current trends and perspectives in the application of polymeric materials for wastewater treatment” were here brought together. For sure, this set of papers will be helpful and inspiring for readers interested in this topic.
Technology: general issues --- waste silk --- dopamine --- iron particles --- wastewater treatment --- activated carbon microsphere --- sodium lignosulfonate --- Cr(VI) --- adsorption --- modified polymeric resin --- t-butyl phosphate impregnation --- polymer based adsorbents --- dye adsorption --- response surface methodology --- nano-MgO --- structural modification --- permeability --- antifouling --- color rejection --- POME --- fluoroquinolones --- ultrasound radiation --- mesoporous carbon --- desirability function --- thermodynamics --- wastewater --- cost analysis --- ciprofloxacin --- Polystyrene nanocomposite --- modifications --- characterizations --- antibiotics --- emerging contaminants --- pharmaceuticals --- polymeric adsorbents --- magnetization --- silver nanoparticles --- microfiltration --- membranes --- biofouling --- sputtering --- magnetite --- co-precipitation method --- Rhodamine B --- sodium dodecyl sulfate --- selective adsorption --- dysprosium --- neodymium --- fabric adsorbent --- radiation --- graft polymerization --- molecular imprinting --- polymer --- sertraline --- cross-reactivity --- SSRI --- template --- sorbent --- n/a
Choose an application
Very few materials have attracted so much attention in recent years, both from researchers and industry, as layered double hydroxides (LDHs) have. LDHs, which are also referred to as anionic clays or hydrotalcites, are a wide class of inorganic ionic lamellar clay materials consisting of alternately stacked positively charged metal hydroxide layers with intercalated charge-balancing anions in hydrated interlayer regions. Their unique properties, such as their extremely high versatility in chemical composition and intercalation ability, extraordinary tuneability in composition as well as morphology, good biocompatibility and high anion exchangeability, have triggered immense interdisciplinary interest for their use in many different fields of chemistry, biology, medicine, and physics. Indeed, the applications of LDHs are constantly growing: LDHs, in the form of aggregated lamellar clusters, exfoliated single-layer nanosheets, or hierarchical films of interconnected nanoplatelets, can be effectively used as nanoscale vehicles in drug delivery, heterogeneous catalysts and supports for molecular catalysts, ion exchangers and adsorbents, solid electrolytes or fillers in electrochemistry, for the fabrication of superhydrophobic surfaces, water treatment and purification, and the synthesis of functional thin films. This book gathers the contributions to the Special Issue “Layered Double Hydroxides” of Crystals, which includes two review articles and seven research papers.
Research & information: general --- layered double hydroxide --- memory effect --- rare earth --- europium --- 1,3,5-benzenetricarboxylic acid --- alginate beads --- green sorbent --- selective adsorption --- heavy metals --- tetracycline --- metal hydroxides --- layered double hydroxides --- removal --- water sample --- Bacillus subtilis --- surfactin --- quantitative analysis --- fermentation --- growth phase --- cellular biology --- catalysis --- DNA --- drug delivery --- hydrotalcite --- osteogenesis --- photocatalysis --- RNA. --- antimonate uptake --- mine water --- brandholzite --- zincalstibite --- iron precursor --- acidic residual solution --- LDH synthesis --- Mo(VI) adsorption --- resveratrol --- solid lipid nanoparticles --- endurance exercise --- mitochondrial nutrients --- mitochondrial quality control --- origin of life --- layer double hydroxide --- synthetic biology --- bioinspired devices --- biosensors --- bioanalysis --- n/a
Choose an application
Water is indispensable to the functioning of most known life forms, and good water quality is essential to human health, social and economic development, and ecosystem functioning. Nonetheless, population growth has been leading to the degradation and depletion of fresh water resources. Under these circumstances, ensuring sufficient and safe water supplies for everyone is one of the Sustainable Development Goals (SDGs) set by the United Nations General Assembly in 2015 for the year 2030. For this goal to be achieved, the development and implementation of appropriate and efficient wastewater treatments that allow us to reduce water pollution is a major challenge.In view of the relevant contribution that polymers and polymeric materials may have in the conservation of the aquatic environment, namely by their application in wastewater treatment, original research and review papers on “Current trends and perspectives in the application of polymeric materials for wastewater treatment” were here brought together. For sure, this set of papers will be helpful and inspiring for readers interested in this topic.
waste silk --- dopamine --- iron particles --- wastewater treatment --- activated carbon microsphere --- sodium lignosulfonate --- Cr(VI) --- adsorption --- modified polymeric resin --- t-butyl phosphate impregnation --- polymer based adsorbents --- dye adsorption --- response surface methodology --- nano-MgO --- structural modification --- permeability --- antifouling --- color rejection --- POME --- fluoroquinolones --- ultrasound radiation --- mesoporous carbon --- desirability function --- thermodynamics --- wastewater --- cost analysis --- ciprofloxacin --- Polystyrene nanocomposite --- modifications --- characterizations --- antibiotics --- emerging contaminants --- pharmaceuticals --- polymeric adsorbents --- magnetization --- silver nanoparticles --- microfiltration --- membranes --- biofouling --- sputtering --- magnetite --- co-precipitation method --- Rhodamine B --- sodium dodecyl sulfate --- selective adsorption --- dysprosium --- neodymium --- fabric adsorbent --- radiation --- graft polymerization --- molecular imprinting --- polymer --- sertraline --- cross-reactivity --- SSRI --- template --- sorbent --- n/a
Choose an application
Very few materials have attracted so much attention in recent years, both from researchers and industry, as layered double hydroxides (LDHs) have. LDHs, which are also referred to as anionic clays or hydrotalcites, are a wide class of inorganic ionic lamellar clay materials consisting of alternately stacked positively charged metal hydroxide layers with intercalated charge-balancing anions in hydrated interlayer regions. Their unique properties, such as their extremely high versatility in chemical composition and intercalation ability, extraordinary tuneability in composition as well as morphology, good biocompatibility and high anion exchangeability, have triggered immense interdisciplinary interest for their use in many different fields of chemistry, biology, medicine, and physics. Indeed, the applications of LDHs are constantly growing: LDHs, in the form of aggregated lamellar clusters, exfoliated single-layer nanosheets, or hierarchical films of interconnected nanoplatelets, can be effectively used as nanoscale vehicles in drug delivery, heterogeneous catalysts and supports for molecular catalysts, ion exchangers and adsorbents, solid electrolytes or fillers in electrochemistry, for the fabrication of superhydrophobic surfaces, water treatment and purification, and the synthesis of functional thin films. This book gathers the contributions to the Special Issue “Layered Double Hydroxides” of Crystals, which includes two review articles and seven research papers.
layered double hydroxide --- memory effect --- rare earth --- europium --- 1,3,5-benzenetricarboxylic acid --- alginate beads --- green sorbent --- selective adsorption --- heavy metals --- tetracycline --- metal hydroxides --- layered double hydroxides --- removal --- water sample --- Bacillus subtilis --- surfactin --- quantitative analysis --- fermentation --- growth phase --- cellular biology --- catalysis --- DNA --- drug delivery --- hydrotalcite --- osteogenesis --- photocatalysis --- RNA. --- antimonate uptake --- mine water --- brandholzite --- zincalstibite --- iron precursor --- acidic residual solution --- LDH synthesis --- Mo(VI) adsorption --- resveratrol --- solid lipid nanoparticles --- endurance exercise --- mitochondrial nutrients --- mitochondrial quality control --- origin of life --- layer double hydroxide --- synthetic biology --- bioinspired devices --- biosensors --- bioanalysis --- n/a
Choose an application
Water is indispensable to the functioning of most known life forms, and good water quality is essential to human health, social and economic development, and ecosystem functioning. Nonetheless, population growth has been leading to the degradation and depletion of fresh water resources. Under these circumstances, ensuring sufficient and safe water supplies for everyone is one of the Sustainable Development Goals (SDGs) set by the United Nations General Assembly in 2015 for the year 2030. For this goal to be achieved, the development and implementation of appropriate and efficient wastewater treatments that allow us to reduce water pollution is a major challenge.In view of the relevant contribution that polymers and polymeric materials may have in the conservation of the aquatic environment, namely by their application in wastewater treatment, original research and review papers on “Current trends and perspectives in the application of polymeric materials for wastewater treatment” were here brought together. For sure, this set of papers will be helpful and inspiring for readers interested in this topic.
Technology: general issues --- waste silk --- dopamine --- iron particles --- wastewater treatment --- activated carbon microsphere --- sodium lignosulfonate --- Cr(VI) --- adsorption --- modified polymeric resin --- t-butyl phosphate impregnation --- polymer based adsorbents --- dye adsorption --- response surface methodology --- nano-MgO --- structural modification --- permeability --- antifouling --- color rejection --- POME --- fluoroquinolones --- ultrasound radiation --- mesoporous carbon --- desirability function --- thermodynamics --- wastewater --- cost analysis --- ciprofloxacin --- Polystyrene nanocomposite --- modifications --- characterizations --- antibiotics --- emerging contaminants --- pharmaceuticals --- polymeric adsorbents --- magnetization --- silver nanoparticles --- microfiltration --- membranes --- biofouling --- sputtering --- magnetite --- co-precipitation method --- Rhodamine B --- sodium dodecyl sulfate --- selective adsorption --- dysprosium --- neodymium --- fabric adsorbent --- radiation --- graft polymerization --- molecular imprinting --- polymer --- sertraline --- cross-reactivity --- SSRI --- template --- sorbent --- waste silk --- dopamine --- iron particles --- wastewater treatment --- activated carbon microsphere --- sodium lignosulfonate --- Cr(VI) --- adsorption --- modified polymeric resin --- t-butyl phosphate impregnation --- polymer based adsorbents --- dye adsorption --- response surface methodology --- nano-MgO --- structural modification --- permeability --- antifouling --- color rejection --- POME --- fluoroquinolones --- ultrasound radiation --- mesoporous carbon --- desirability function --- thermodynamics --- wastewater --- cost analysis --- ciprofloxacin --- Polystyrene nanocomposite --- modifications --- characterizations --- antibiotics --- emerging contaminants --- pharmaceuticals --- polymeric adsorbents --- magnetization --- silver nanoparticles --- microfiltration --- membranes --- biofouling --- sputtering --- magnetite --- co-precipitation method --- Rhodamine B --- sodium dodecyl sulfate --- selective adsorption --- dysprosium --- neodymium --- fabric adsorbent --- radiation --- graft polymerization --- molecular imprinting --- polymer --- sertraline --- cross-reactivity --- SSRI --- template --- sorbent
Choose an application
Very few materials have attracted so much attention in recent years, both from researchers and industry, as layered double hydroxides (LDHs) have. LDHs, which are also referred to as anionic clays or hydrotalcites, are a wide class of inorganic ionic lamellar clay materials consisting of alternately stacked positively charged metal hydroxide layers with intercalated charge-balancing anions in hydrated interlayer regions. Their unique properties, such as their extremely high versatility in chemical composition and intercalation ability, extraordinary tuneability in composition as well as morphology, good biocompatibility and high anion exchangeability, have triggered immense interdisciplinary interest for their use in many different fields of chemistry, biology, medicine, and physics. Indeed, the applications of LDHs are constantly growing: LDHs, in the form of aggregated lamellar clusters, exfoliated single-layer nanosheets, or hierarchical films of interconnected nanoplatelets, can be effectively used as nanoscale vehicles in drug delivery, heterogeneous catalysts and supports for molecular catalysts, ion exchangers and adsorbents, solid electrolytes or fillers in electrochemistry, for the fabrication of superhydrophobic surfaces, water treatment and purification, and the synthesis of functional thin films. This book gathers the contributions to the Special Issue “Layered Double Hydroxides” of Crystals, which includes two review articles and seven research papers.
Research & information: general --- layered double hydroxide --- memory effect --- rare earth --- europium --- 1,3,5-benzenetricarboxylic acid --- alginate beads --- green sorbent --- selective adsorption --- heavy metals --- tetracycline --- metal hydroxides --- layered double hydroxides --- removal --- water sample --- Bacillus subtilis --- surfactin --- quantitative analysis --- fermentation --- growth phase --- cellular biology --- catalysis --- DNA --- drug delivery --- hydrotalcite --- osteogenesis --- photocatalysis --- RNA. --- antimonate uptake --- mine water --- brandholzite --- zincalstibite --- iron precursor --- acidic residual solution --- LDH synthesis --- Mo(VI) adsorption --- resveratrol --- solid lipid nanoparticles --- endurance exercise --- mitochondrial nutrients --- mitochondrial quality control --- origin of life --- layer double hydroxide --- synthetic biology --- bioinspired devices --- biosensors --- bioanalysis --- layered double hydroxide --- memory effect --- rare earth --- europium --- 1,3,5-benzenetricarboxylic acid --- alginate beads --- green sorbent --- selective adsorption --- heavy metals --- tetracycline --- metal hydroxides --- layered double hydroxides --- removal --- water sample --- Bacillus subtilis --- surfactin --- quantitative analysis --- fermentation --- growth phase --- cellular biology --- catalysis --- DNA --- drug delivery --- hydrotalcite --- osteogenesis --- photocatalysis --- RNA. --- antimonate uptake --- mine water --- brandholzite --- zincalstibite --- iron precursor --- acidic residual solution --- LDH synthesis --- Mo(VI) adsorption --- resveratrol --- solid lipid nanoparticles --- endurance exercise --- mitochondrial nutrients --- mitochondrial quality control --- origin of life --- layer double hydroxide --- synthetic biology --- bioinspired devices --- biosensors --- bioanalysis
Choose an application
This book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications.
graphene oxide --- n/a --- latex compounding method --- gold nanoparticles --- ratiometric temperature sensing --- catalysis --- conjugated polymer nanoparticles --- carrier transport --- polymer-NP interface --- nanocomposites --- polyethylene --- structure-property relationship --- chemical and physical interface --- SiO2/TiO2 nanocomposite --- nanoparticles --- separation --- conductive polymer --- clays --- organic light-emitting diodes (OLEDs) --- nanocomposite --- molecular chain motion --- nanosheets --- morphology --- metal oxides --- hybrid hydrogels --- gas barrier properties --- nanomaterials --- in situ synthesis --- mechanical properties --- power cable insulation --- inorganic nanotubes --- surface modification of silica --- optoelectronic properties --- layered structures --- sol–gel --- nano-hybrids --- fluorescent assay --- N-isopropylacrylamide --- bismaleimide --- electrical property --- solar cell --- N-isopropylmethacrylamide --- SiO2 microspheres --- PFO/MEH-PPV hybrids --- power-conversion efficiency --- in-situ synthesis --- electrical breakdown --- active layer --- crystallization kinetics --- polypropylene nanocomposite --- electric energy storage --- silver ions --- composite membrane --- carbon nanoparticles --- graphene --- composites --- electrode --- reduced graphene oxide --- selective adsorption --- thermoresponsive hyperbranched polymer --- colorimetric sensor --- FRET --- polymers --- graphene-like WS2 --- polymer-matrix composites --- thermoplastic nanocomposite --- fluorescence resonance energy transfer --- PHBV --- melamine --- Ag nanoparticles --- adhesion --- chain topology --- interfacial layer --- silica/NR composite --- sol-gel
Listing 1 - 7 of 7 |
Sort by
|