Narrow your search
Listing 1 - 9 of 9
Sort by

Book
Molecular vibrations : the theory of infrared and Raman vibrational spectra
Authors: --- ---
Year: 1955 Publisher: New York (N.Y.) : McGraw-Hill,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Group theory and symmetry in chemistry
Author:
Year: 1969 Publisher: New York (N.Y.) : McGraw-Hill,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Elements of diatomic molecular spectra
Author:
Year: 1968 Publisher: Reading (Mass.) : Addison-Wesley,


Book
Infrared and raman selection rules for molecular and lattice vibrations : the correlation method
Authors: --- --- ---
ISBN: 047125620X 9780471256205 Year: 1972 Publisher: New York, NY : Wiley-Interscience,


Book
Recent Advances in Linear and Nonlinear Optics
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Sight is the dominant sense of mankind to apprehend the world at the earth scale and beyond the frontiers of the infinite, from the nanometer to the incommensurable. Primarily based on sunlight and natural and artificial light sources, optics has been the major companion of spectroscopy since scientific observation began. The invention of the laser in the early sixties has boosted optical spectroscopy through the intrinsic or specific symmetry electronic properties of materials at the multiscale (birefringence, nonlinear and photonic crystals), revealed by the ability to monitor light polarization inside or on the surface of designed objects. This Special Issue of Symmetry features articles and reviews that are of tremendous interest to scientists who study linear and nonlinear optics, all oriented around the common axis of symmetry. Contributions transverse the entire breadth of this field, including those concerning polarization and anisotropy within colloids of chromophores and metal/semiconducting nanoparticles probed by UV-visible and fluorescence spectroscopies; microscopic structures of liquid–liquid, liquid–gas, and liquid–solid interfaces; surface- and symmetry-specific optical techniques and simulations, including second-harmonic and sum-frequency generations, and surface-enhanced and coherent anti-Stokes Raman spectroscopies; orientation and chirality of bio-molecular interfaces; symmetry breaking in photochemistry; symmetric multipolar molecules; reversible electronic energy transfer within supramolecular systems; plasmonics; and light polarization effects in materials.


Book
Recent Advances in Linear and Nonlinear Optics
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Sight is the dominant sense of mankind to apprehend the world at the earth scale and beyond the frontiers of the infinite, from the nanometer to the incommensurable. Primarily based on sunlight and natural and artificial light sources, optics has been the major companion of spectroscopy since scientific observation began. The invention of the laser in the early sixties has boosted optical spectroscopy through the intrinsic or specific symmetry electronic properties of materials at the multiscale (birefringence, nonlinear and photonic crystals), revealed by the ability to monitor light polarization inside or on the surface of designed objects. This Special Issue of Symmetry features articles and reviews that are of tremendous interest to scientists who study linear and nonlinear optics, all oriented around the common axis of symmetry. Contributions transverse the entire breadth of this field, including those concerning polarization and anisotropy within colloids of chromophores and metal/semiconducting nanoparticles probed by UV-visible and fluorescence spectroscopies; microscopic structures of liquid–liquid, liquid–gas, and liquid–solid interfaces; surface- and symmetry-specific optical techniques and simulations, including second-harmonic and sum-frequency generations, and surface-enhanced and coherent anti-Stokes Raman spectroscopies; orientation and chirality of bio-molecular interfaces; symmetry breaking in photochemistry; symmetric multipolar molecules; reversible electronic energy transfer within supramolecular systems; plasmonics; and light polarization effects in materials.


Book
Recent Advances in Linear and Nonlinear Optics
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Sight is the dominant sense of mankind to apprehend the world at the earth scale and beyond the frontiers of the infinite, from the nanometer to the incommensurable. Primarily based on sunlight and natural and artificial light sources, optics has been the major companion of spectroscopy since scientific observation began. The invention of the laser in the early sixties has boosted optical spectroscopy through the intrinsic or specific symmetry electronic properties of materials at the multiscale (birefringence, nonlinear and photonic crystals), revealed by the ability to monitor light polarization inside or on the surface of designed objects. This Special Issue of Symmetry features articles and reviews that are of tremendous interest to scientists who study linear and nonlinear optics, all oriented around the common axis of symmetry. Contributions transverse the entire breadth of this field, including those concerning polarization and anisotropy within colloids of chromophores and metal/semiconducting nanoparticles probed by UV-visible and fluorescence spectroscopies; microscopic structures of liquid–liquid, liquid–gas, and liquid–solid interfaces; surface- and symmetry-specific optical techniques and simulations, including second-harmonic and sum-frequency generations, and surface-enhanced and coherent anti-Stokes Raman spectroscopies; orientation and chirality of bio-molecular interfaces; symmetry breaking in photochemistry; symmetric multipolar molecules; reversible electronic energy transfer within supramolecular systems; plasmonics; and light polarization effects in materials.


Book
The Jahn-Teller effect in C [sub] 60 and other icosahedral complexes
Authors: ---
ISBN: 0691225346 Year: 1997 Publisher: Princeton, New Jersey : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Because of the high symmetry involved, the Jahn-Teller effect is the natural starting point for considering electron-phonon (or vibronic) interactions in icosahedral molecules. This work is the first comprehensive theoretical analysis of the Jahn-Teller interaction in C60 and other icosahedral complexes. The importance of this research derives in part from the increasing, widespread interest in C60 and other molecular clusters and their application in science and industry. The electrical and spectroscopic properties of fullerene and fulleride compounds depend intimately on the coupling between the electronic and vibrational modes of these systems, and this book addresses the fundamental theoretical questions. In particular, a chapter is devoted to the connection between the theory and experimental observations, such as ESR (electron spin resonance) effects and molecular spectra. Earlier books have discussed the theory of Jahn-Teller interactions in lower symmetry structures (cubic, tetrahedral, tetragonal, trigonal,.); this is the first that focuses on the new icosahedral systems, whose most famous example is Buckminsterfullerene, C60. The book's authors have over fifty years of combined research experience into the theoretical aspects of the Jahn-Teller effect.


Book
Probing the atom : interactions of coupled states, fast beams, and loose electrons
Author:
ISBN: 0691228264 Year: 2000 Publisher: Princeton, New Jersey : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The many-faceted efforts to understand the structure and interactions of atoms over the past hundred years have contributed decisively and dramatically to the explosive development of physics. There is hardly a branch of modern physical science that does not in some seminal way rely on the fundamental principles and mathematical and experimental insights that derive from these studies. In particular, the drive to understand the singular features of the hydrogen atom--simultaneously the archetype of all atoms and the least typical atom--spurred many of the twentieth century's advances in physics and chemistry. This book gives an in-depth account of the author's own penetrating experimental and theoretical investigations of the hydrogen atom, while simultaneously providing broad lessons in the application of quantum mechanics to atomic structure and interactions. A pioneer in the combined use of atomic accelerators and radiofrequency spectroscopy for probing the internal structure of the hydrogen atom, Mark Silverman examines the general principles behind this far-reaching experimental approach. Fast-moving protons are directed into gas or foil targets from which they capture electrons to become hydrogen atoms moving uniformly at very high speeds. During their rapid passage through the spectroscopy chamber of the atomic accelerator, these atoms reveal by the light they emit fascinating details of their internal configuration and the interactions that created them. Silverman examines the effects of radiofrequency fields on the hydrogen atom clearly and systematically, explaining the details of these interactions at different levels of complexity and refinement, each level illuminating the physical processes involved from different and complementary perspectives. Readers interested in diverse areas of physics and physical chemistry will appreciate both the theoretical and practical implications of Silverman's studies and the personal style with which he relays them. This is a work of not only an outstanding research physicist, but a fine teacher who understands how curiosity underlies all science.

Listing 1 - 9 of 9
Sort by