Listing 1 - 10 of 11 | << page >> |
Sort by
|
Choose an application
Devastating seismic events occurring all over the world keep raising the awareness of the scientific, technical and political communities to the need of identifying assets at risk and developing more effective and cost-efficient seismic risk mitigation strategies. Significant advances in earthquake engineering research have been achieved with the rise of new technologies and techniques with potential use in risk assessment, management and mitigation. Nevertheless, there is still much to be done, particularly with regard to existing buildings, most of them built without anti-seismic provisions. The wide variety of construction and structural systems, associated with the complex behaviour of their materials, greatly limit the application of current codes and building standards to the existing building stock. To tackle this issue, there is a fundamental need for developing multidisciplinary research that can lead to the development of more sophisticated and reliable methods of analysis, as well as to improved seismic retrofitting techniques compliant with buildings conservation principles. This book intends to contribute to the aforementioned goal by stimulating the exchange of ideas and knowledge on the assessment and reduction of the seismic vulnerability of existing buildings. 10 high quality contributions authored by international experts from Italy, Portugal, Morocco, Nepal, Czech Republic and Spain are included herein. All contributions pursue the protection of existing buildings by considering the most updated methods and advanced solutions emerging from different fields of expertise.
brittle failure --- earthquakes scenarios --- n/a --- FRP --- joints --- neural networks --- pushover --- seismic performance --- infilled frames --- carpentry halved joint --- inter-storey drift --- safety assessment --- seismic risk --- high-rise RC --- discrete elements --- seismic vulnerability assessment --- limit analysis --- seismic capacity --- Geo-hazard site effects --- automatic protocols --- numerical modelling --- seismic retrofit --- retrofit --- numerical modeling --- Imzouren --- finite element modelling --- Expected damage scenario --- masonry structures --- large-scale vulnerability analysis --- seismic restoration --- vulnerability assessment --- earthquakes --- unreinforced masonry structure --- frame-infill interaction --- CARTIS form --- seismic analysis --- nonlinear static analysis --- Seismic attenuation law --- seismic behavior --- seismic retrofitting --- damage assessment --- capacity curves --- energy dissipation --- mobile-device applications --- in situ structural diagnosis --- vulnerability index --- Vulnerability assessment --- GIS mapping --- Gorkha earthquake
Choose an application
This book, Green Concrete for a Better Sustainable Environment, aims to cover recent advances in the development of green concrete solutions and discuss the best ways to leverage opportunities in this domain. Concrete can be described as green concrete if it has one of the following features; it uses waste material as at least one of its components, its production process does not lead to environmental destruction, or it has high performance and life cycle sustainability. At present, natural resources are running out. Cement and concrete made from industrial and construction waste can be regarded as valuable resources for civil infrastructure construction. Green concrete will not only contribute to a circular economy, but can also help to reduce the amount of embodied energy and CO2 emissions associated with cement manufacturing and aggregate quarrying. Using green concrete can also mitigate the environmental threats associated with industrial waste materials. This book covers the theoretical, experimental, applied and modelling research studies on the materials, products and structures related to sustainable cement-based composites.
History of engineering & technology --- recycled aggregate concrete --- shrinkage and creep --- attached mortar --- prediction model --- construction and demolition wastes --- resource utilization --- recycled concrete hollow block --- masonry walls --- seismic performance --- steel frame --- infilled shear walls --- semi-rigid connection --- seismic behavior --- MSWI bottom ash --- concrete --- sulfate attack --- capillary transport --- crystallization --- husk mortar wallboard --- experiment --- lateral strength --- strain --- failure load --- full replacement ratio --- section steel and RAC --- bond behavior --- SRRC (Steel Reinforced Recycled Concrete) --- bond strength --- bond slip --- numerical simulation --- salt --- NaCl --- asphalt concrete --- freeze–thaw cycles --- winter road --- industrial waste --- sustainable concrete --- recycled expanded glass --- n/a --- freeze-thaw cycles
Choose an application
This book, Green Concrete for a Better Sustainable Environment, aims to cover recent advances in the development of green concrete solutions and discuss the best ways to leverage opportunities in this domain. Concrete can be described as green concrete if it has one of the following features; it uses waste material as at least one of its components, its production process does not lead to environmental destruction, or it has high performance and life cycle sustainability. At present, natural resources are running out. Cement and concrete made from industrial and construction waste can be regarded as valuable resources for civil infrastructure construction. Green concrete will not only contribute to a circular economy, but can also help to reduce the amount of embodied energy and CO2 emissions associated with cement manufacturing and aggregate quarrying. Using green concrete can also mitigate the environmental threats associated with industrial waste materials. This book covers the theoretical, experimental, applied and modelling research studies on the materials, products and structures related to sustainable cement-based composites.
recycled aggregate concrete --- shrinkage and creep --- attached mortar --- prediction model --- construction and demolition wastes --- resource utilization --- recycled concrete hollow block --- masonry walls --- seismic performance --- steel frame --- infilled shear walls --- semi-rigid connection --- seismic behavior --- MSWI bottom ash --- concrete --- sulfate attack --- capillary transport --- crystallization --- husk mortar wallboard --- experiment --- lateral strength --- strain --- failure load --- full replacement ratio --- section steel and RAC --- bond behavior --- SRRC (Steel Reinforced Recycled Concrete) --- bond strength --- bond slip --- numerical simulation --- salt --- NaCl --- asphalt concrete --- freeze–thaw cycles --- winter road --- industrial waste --- sustainable concrete --- recycled expanded glass --- n/a --- freeze-thaw cycles
Choose an application
This book, Green Concrete for a Better Sustainable Environment, aims to cover recent advances in the development of green concrete solutions and discuss the best ways to leverage opportunities in this domain. Concrete can be described as green concrete if it has one of the following features; it uses waste material as at least one of its components, its production process does not lead to environmental destruction, or it has high performance and life cycle sustainability. At present, natural resources are running out. Cement and concrete made from industrial and construction waste can be regarded as valuable resources for civil infrastructure construction. Green concrete will not only contribute to a circular economy, but can also help to reduce the amount of embodied energy and CO2 emissions associated with cement manufacturing and aggregate quarrying. Using green concrete can also mitigate the environmental threats associated with industrial waste materials. This book covers the theoretical, experimental, applied and modelling research studies on the materials, products and structures related to sustainable cement-based composites.
History of engineering & technology --- recycled aggregate concrete --- shrinkage and creep --- attached mortar --- prediction model --- construction and demolition wastes --- resource utilization --- recycled concrete hollow block --- masonry walls --- seismic performance --- steel frame --- infilled shear walls --- semi-rigid connection --- seismic behavior --- MSWI bottom ash --- concrete --- sulfate attack --- capillary transport --- crystallization --- husk mortar wallboard --- experiment --- lateral strength --- strain --- failure load --- full replacement ratio --- section steel and RAC --- bond behavior --- SRRC (Steel Reinforced Recycled Concrete) --- bond strength --- bond slip --- numerical simulation --- salt --- NaCl --- asphalt concrete --- freeze-thaw cycles --- winter road --- industrial waste --- sustainable concrete --- recycled expanded glass
Choose an application
There are many regions worldwide which are susceptible to extreme loads such as earthquakes. These can cause loss of life and adverse impacts on civil infrastructures, the environment, and communities. A series of methods and measures have been used to mitigate the effects of these extreme loads. The adopted approaches and methods must enable civil structures to be resilient and sustainable. Therefore, to reduce damage and downtime in addition to protecting life and promoting safety, new resilient structure technologies must be proposed and developed. This special issue book focuses on methods of enhancing the sustainability and resilience of civil infrastructures in the event of extreme loads (e.g., earthquakes). This book contributes proposals of and theoretical, numerical, and experimental research on new and resilient civil structures and their structural performance under extreme loading events. These works will certainly play a significant role in promoting the application of new recoverable structures. Moreover, this book also introduces some case studies discussing the implementation of low-damage structural systems in buildings as well as articles on the development of design philosophies and performance criteria for resilient buildings and new sustainable communities.
artificial neural network --- corrosion --- mined-out region --- finite element --- column-top isolation --- pseudodynamic test --- seismic performance --- sustainability prediction --- shear performance --- nonlinear time-history analysis --- shaking table test --- civil infrastructures --- angle section --- seismic connection detail --- cyclic loading test --- extreme loads --- sudden column removal --- flow --- water supply networks --- displacement response spectrum --- cold-formed steel composite shear wall building --- mitigation --- probabilistic framework --- nonlinearity --- optimized section --- corporation --- GM selection --- seismic damage --- natural hazards --- analysis --- spectrum variance --- viscous damper --- Great East Japan Earthquake --- OpenFresco --- Brazier flattening --- substructure --- damage --- model-based --- tapered cross section --- liquefaction --- measurement --- NDE --- settlement --- seismic behavior --- resilience --- hybrid damper --- numerical simulation --- structural response estimates --- probabilistic --- energy-based approximate analysis --- damping effect --- cold-formed steel structure --- silt --- ground motion --- boundary technique --- energy dissipative devices --- reinforced concrete --- cyclic reversal test --- ground improvement --- simplified modeling method --- beam --- girder --- integration algorithm --- force-displacement control --- reinforced concrete frames --- mid-rise --- intermediate column --- time-frequency energy distribution --- single-layer reticulated dome --- structural robustness --- precast slab --- chloride ingress --- dynamic model --- Brazier effect --- earthquake --- sustainability --- carbonation --- replaceable coupling beam --- railway construction --- concrete --- variational method --- shear wall --- progressive collapse --- abnormal loads --- recovery --- earthquakes --- resilience-based design --- disaster --- OpenSees --- seismic analysis --- response surface method --- subway station --- ratcheting effect --- matching pursuit decomposition --- hybrid simulation --- subway induced vibration --- dynamic structural analysis --- numerical simulations --- structural sensitivity --- inflection point --- system restoration --- infinite element boundary --- simulation model --- Monte Carlo simulation --- nonlinear response
Choose an application
Exceptional loads on buildings and structures are known to take origin and manifest from different causes, like natural hazards and possible high-strain dynamic effects, human-made attacks and impact issues for load-bearing components, possible accidents, and even unfavorable/extreme operational conditions. All these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated analysis methods and performance indicators are required for the design and maintenance under the expected lifetime. Typical issues and challenges can find huge efforts and clarification in research studies, which are able to address with experiments and/or numerical analyses the expected performance and capacity of a given structural system, with respect to demands. Accordingly, especially for existing structures or strategic buildings, the need for retrofit or mitigation of adverse effects suggests the definition of optimal and safe use of innovative materials, techniques, and procedures. This Special Issue follows the first successful edition and confirms the need of continuous research efforts in support of building design under extreme loads, with a list of original research papers focused on various key aspects of structural performance assessment for buildings and systems under exceptional design actions and operational conditions.
Technology: general issues --- History of engineering & technology --- blast loads --- slab-column joints --- prediction model --- damage level --- progressive collapse --- steel beam-to-column connections --- catenary mechanism --- double-span assemblies --- stiffness degradation --- timber-to-timber composite (TCC) joints --- push-out (PO) test setup --- inclined self-tapping screws (STSs) --- finite-element (FE) method --- cohesive zone modelling (CZM) method --- boundaries --- friction --- sensitivity study --- prototype abutment --- non-destructive test --- surcharge load --- mode number --- scour --- steel truss --- roof structure --- partial collapse --- finite element analysis --- lightning strike --- cable-stayed bridge --- social disaster --- blast scenario --- blast analysis --- LS-DYNA --- balau wood --- cross-arm --- transmission tower --- bracing system --- creep --- findley’s power law model --- burger model --- top-seat angle connections (TSACW) --- component-based models --- initial stiffness --- ultimate moment capacity --- moment-rotation relation --- artificial neural network (ANN) --- sensitivity analysis (SA) --- reinforced concrete column --- multi-column pier --- seismic behavior --- lap-splice --- transverse reinforcement --- plastic hinge --- ductility --- bonded-in rod (BiR) connections --- adhesives --- fracture modes --- moisture --- experiments --- linear elastic fracture mechanics (LEFM) --- analytical model --- aeroelastic experiments --- experimental uncertainty --- singular value decomposition --- correlation field --- cathedral --- foundation rehabilitation --- jacked-in piles --- soil injection --- cracks --- masonry --- differential equation of motion --- Legendre–Galerkin matrix (LGM) method --- algebraic polynomials --- single degree of freedom (SDOF) --- multi degree of freedom (MDOF) --- n/a --- findley's power law model --- Legendre-Galerkin matrix (LGM) method
Choose an application
Exceptional loads on buildings and structures are known to take origin and manifest from different causes, like natural hazards and possible high-strain dynamic effects, human-made attacks and impact issues for load-bearing components, possible accidents, and even unfavorable/extreme operational conditions. All these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated analysis methods and performance indicators are required for the design and maintenance under the expected lifetime. Typical issues and challenges can find huge efforts and clarification in research studies, which are able to address with experiments and/or numerical analyses the expected performance and capacity of a given structural system, with respect to demands. Accordingly, especially for existing structures or strategic buildings, the need for retrofit or mitigation of adverse effects suggests the definition of optimal and safe use of innovative materials, techniques, and procedures. This Special Issue follows the first successful edition and confirms the need of continuous research efforts in support of building design under extreme loads, with a list of original research papers focused on various key aspects of structural performance assessment for buildings and systems under exceptional design actions and operational conditions.
blast loads --- slab-column joints --- prediction model --- damage level --- progressive collapse --- steel beam-to-column connections --- catenary mechanism --- double-span assemblies --- stiffness degradation --- timber-to-timber composite (TCC) joints --- push-out (PO) test setup --- inclined self-tapping screws (STSs) --- finite-element (FE) method --- cohesive zone modelling (CZM) method --- boundaries --- friction --- sensitivity study --- prototype abutment --- non-destructive test --- surcharge load --- mode number --- scour --- steel truss --- roof structure --- partial collapse --- finite element analysis --- lightning strike --- cable-stayed bridge --- social disaster --- blast scenario --- blast analysis --- LS-DYNA --- balau wood --- cross-arm --- transmission tower --- bracing system --- creep --- findley’s power law model --- burger model --- top-seat angle connections (TSACW) --- component-based models --- initial stiffness --- ultimate moment capacity --- moment-rotation relation --- artificial neural network (ANN) --- sensitivity analysis (SA) --- reinforced concrete column --- multi-column pier --- seismic behavior --- lap-splice --- transverse reinforcement --- plastic hinge --- ductility --- bonded-in rod (BiR) connections --- adhesives --- fracture modes --- moisture --- experiments --- linear elastic fracture mechanics (LEFM) --- analytical model --- aeroelastic experiments --- experimental uncertainty --- singular value decomposition --- correlation field --- cathedral --- foundation rehabilitation --- jacked-in piles --- soil injection --- cracks --- masonry --- differential equation of motion --- Legendre–Galerkin matrix (LGM) method --- algebraic polynomials --- single degree of freedom (SDOF) --- multi degree of freedom (MDOF) --- n/a --- findley's power law model --- Legendre-Galerkin matrix (LGM) method
Choose an application
Exceptional loads on buildings and structures are known to take origin and manifest from different causes, like natural hazards and possible high-strain dynamic effects, human-made attacks and impact issues for load-bearing components, possible accidents, and even unfavorable/extreme operational conditions. All these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated analysis methods and performance indicators are required for the design and maintenance under the expected lifetime. Typical issues and challenges can find huge efforts and clarification in research studies, which are able to address with experiments and/or numerical analyses the expected performance and capacity of a given structural system, with respect to demands. Accordingly, especially for existing structures or strategic buildings, the need for retrofit or mitigation of adverse effects suggests the definition of optimal and safe use of innovative materials, techniques, and procedures. This Special Issue follows the first successful edition and confirms the need of continuous research efforts in support of building design under extreme loads, with a list of original research papers focused on various key aspects of structural performance assessment for buildings and systems under exceptional design actions and operational conditions.
Technology: general issues --- History of engineering & technology --- blast loads --- slab-column joints --- prediction model --- damage level --- progressive collapse --- steel beam-to-column connections --- catenary mechanism --- double-span assemblies --- stiffness degradation --- timber-to-timber composite (TCC) joints --- push-out (PO) test setup --- inclined self-tapping screws (STSs) --- finite-element (FE) method --- cohesive zone modelling (CZM) method --- boundaries --- friction --- sensitivity study --- prototype abutment --- non-destructive test --- surcharge load --- mode number --- scour --- steel truss --- roof structure --- partial collapse --- finite element analysis --- lightning strike --- cable-stayed bridge --- social disaster --- blast scenario --- blast analysis --- LS-DYNA --- balau wood --- cross-arm --- transmission tower --- bracing system --- creep --- findley's power law model --- burger model --- top-seat angle connections (TSACW) --- component-based models --- initial stiffness --- ultimate moment capacity --- moment-rotation relation --- artificial neural network (ANN) --- sensitivity analysis (SA) --- reinforced concrete column --- multi-column pier --- seismic behavior --- lap-splice --- transverse reinforcement --- plastic hinge --- ductility --- bonded-in rod (BiR) connections --- adhesives --- fracture modes --- moisture --- experiments --- linear elastic fracture mechanics (LEFM) --- analytical model --- aeroelastic experiments --- experimental uncertainty --- singular value decomposition --- correlation field --- cathedral --- foundation rehabilitation --- jacked-in piles --- soil injection --- cracks --- masonry --- differential equation of motion --- Legendre-Galerkin matrix (LGM) method --- algebraic polynomials --- single degree of freedom (SDOF) --- multi degree of freedom (MDOF)
Choose an application
Exceptional loads on buildings and structures may have different causes, including high-strain dynamic effects due to natural hazards, man-made attacks, and accidents, as well as extreme operational conditions (severe temperature variations, humidity, etc.). All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated and refined methods are required for their design, analysis, and maintenance under the expected lifetime. There are major challenges related to the structural typology and material properties with respect to the key features of the imposed design load. Further issues can be derived from the need for risk mitigation or retrofit of existing structures as well as from the optimal and safe design of innovative materials/systems. Finally, in some cases, no appropriate design recommendations are available and, thus, experimental investigations can have a key role within the overall process. In this Special Issue, original research studies, review papers, and experimental and/or numerical investigations are presented for the structural performance assessment of buildings and structures under various extreme conditions that are of interest for design.
History of engineering & technology --- damping device --- seismic design --- design base shear --- nonlinear response history analysis --- liquid storage tank --- earthquake --- wind --- dynamic response --- fluid–solid interaction --- composite shear wall --- seismic behavior --- quasi-static test --- design strength model --- bored-pile --- global strain extensometer --- pile friction resistance --- real-time monitoring --- snow–wind combined experiment facility --- snowdrift --- field observation --- scale experiments --- similarity criterion --- underwater explosion --- composite pressure hull --- whipping --- breathing --- failure index --- laminated glass (LG) --- free vibrations --- fundamental frequency --- mechanical restraints --- field experiments --- analytical modelling --- Finite Element (FE) numerical modelling --- super large cooling tower --- whole construction process --- wind vibration coefficient --- buckling stability --- ultimate bearing capacity --- snow load --- complex roof --- EOF analysis --- characteristics decomposition --- RABT fire curve --- fire simulation --- tunnel fire --- high temperature --- fire safety --- fire accident --- vertical earthquake motion --- seismic response --- atrium-style metro station --- shaking table test --- wind characteristics --- boundary layer --- typhoon --- hurricane --- field measurement --- train derailment --- derailment containment provisions --- collision testing --- post-derailment behavior --- slurry pipe jacking --- friction resistance --- effective friction coefficient --- pipe-soil-slurry interaction --- lubrication efficiency --- concrete --- blast load --- Monte Carlo analysis --- seismic demand --- pushover --- suction caisson --- suction penetration --- soil plug --- hydraulic gradient --- visual tests --- mountainous valley --- bridge site --- boundary transition section (BTS) --- numerical simulation --- wind tunnel test --- small radius TBM interval --- equivalent continuous model --- Winkler elastic foundation beam theory --- transfer matrix method --- horizontal axis deviation --- tall timber buildings --- timber composites --- seismic retrofitting --- Eurocode 8 --- structural assessment --- masonry buildings --- earthquakes --- seismic loads --- existing structures --- reliability --- rehabilitation --- risk --- blast loading --- welded haunch connection --- steel frame structures --- non-linear dynamic analysis --- ABAQUS --- multiple degree of freedom (MDOF) --- frame ductility ratio --- n/a --- fluid-solid interaction --- snow-wind combined experiment facility
Choose an application
Exceptional loads on buildings and structures may have different causes, including high-strain dynamic effects due to natural hazards, man-made attacks, and accidents, as well as extreme operational conditions (severe temperature variations, humidity, etc.). All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated and refined methods are required for their design, analysis, and maintenance under the expected lifetime. There are major challenges related to the structural typology and material properties with respect to the key features of the imposed design load. Further issues can be derived from the need for risk mitigation or retrofit of existing structures as well as from the optimal and safe design of innovative materials/systems. Finally, in some cases, no appropriate design recommendations are available and, thus, experimental investigations can have a key role within the overall process. In this Special Issue, original research studies, review papers, and experimental and/or numerical investigations are presented for the structural performance assessment of buildings and structures under various extreme conditions that are of interest for design.
damping device --- seismic design --- design base shear --- nonlinear response history analysis --- liquid storage tank --- earthquake --- wind --- dynamic response --- fluid–solid interaction --- composite shear wall --- seismic behavior --- quasi-static test --- design strength model --- bored-pile --- global strain extensometer --- pile friction resistance --- real-time monitoring --- snow–wind combined experiment facility --- snowdrift --- field observation --- scale experiments --- similarity criterion --- underwater explosion --- composite pressure hull --- whipping --- breathing --- failure index --- laminated glass (LG) --- free vibrations --- fundamental frequency --- mechanical restraints --- field experiments --- analytical modelling --- Finite Element (FE) numerical modelling --- super large cooling tower --- whole construction process --- wind vibration coefficient --- buckling stability --- ultimate bearing capacity --- snow load --- complex roof --- EOF analysis --- characteristics decomposition --- RABT fire curve --- fire simulation --- tunnel fire --- high temperature --- fire safety --- fire accident --- vertical earthquake motion --- seismic response --- atrium-style metro station --- shaking table test --- wind characteristics --- boundary layer --- typhoon --- hurricane --- field measurement --- train derailment --- derailment containment provisions --- collision testing --- post-derailment behavior --- slurry pipe jacking --- friction resistance --- effective friction coefficient --- pipe-soil-slurry interaction --- lubrication efficiency --- concrete --- blast load --- Monte Carlo analysis --- seismic demand --- pushover --- suction caisson --- suction penetration --- soil plug --- hydraulic gradient --- visual tests --- mountainous valley --- bridge site --- boundary transition section (BTS) --- numerical simulation --- wind tunnel test --- small radius TBM interval --- equivalent continuous model --- Winkler elastic foundation beam theory --- transfer matrix method --- horizontal axis deviation --- tall timber buildings --- timber composites --- seismic retrofitting --- Eurocode 8 --- structural assessment --- masonry buildings --- earthquakes --- seismic loads --- existing structures --- reliability --- rehabilitation --- risk --- blast loading --- welded haunch connection --- steel frame structures --- non-linear dynamic analysis --- ABAQUS --- multiple degree of freedom (MDOF) --- frame ductility ratio --- n/a --- fluid-solid interaction --- snow-wind combined experiment facility
Listing 1 - 10 of 11 | << page >> |
Sort by
|