Listing 1 - 3 of 3 |
Sort by
|
Choose an application
For a sustainable future, the need to use renewable sources to produce electricity is inevitable. Some of these sources—particularly the widely available solar power—are weather-dependent; therefore, utility-scale energy storage will be more and more important. These solar and wind power fluctuations range from minutes (passing cloud) to whole seasons (winter/summer differences). Short-term storage can be solved (at least theoretically) with batteries; however, seasonal storage—due to the amount of storable energy and the self-discharging of some storage methods—is still a challenge to be solved in the near future. We believe that biological Power-to-Methane technology—especially combined with biogas refinement—will be a significant player in the energy storage market within less than a decade. The technology produces high-purity methane, which can be considered—by using green energy and carbon dioxide of biological origin—as a Renewable Natural Gas, or RNG. The ease of storage and use of methane, as well as the effective carbon-freeness, can make it a competitor for batteries or hydrogen-based storage, especially for storage times exceeding several months.
Technology: general issues --- History of engineering & technology --- seasonal energy storage --- power-to-methane --- wastewater treatment plants --- techno-economic assessment --- power-to-gas --- regulation --- energy storage --- biogas --- biomethane --- disruptive technology --- decarbonization --- innovation --- Power-to-Gas --- Power-to-Fuel --- P2M --- P2G --- P2F --- biomethanization --- biomethanation --- competitiveness --- hydrogen utilization --- Hungary --- Power-to-X --- Power-to-Hydrogen --- Power-to-Methane --- hydrogen --- methanation --- sector coupling --- sectoral integration --- energy transition --- eFuels --- electric fuels --- 100% renewable energy scenarios --- thermophilic biogas --- fed-batch reactor --- Methanothermobacter --- metagenome --- starvation --- H2 and CO2 conversion --- methane --- acetate --- seasonal energy storage --- power-to-methane --- wastewater treatment plants --- techno-economic assessment --- power-to-gas --- regulation --- energy storage --- biogas --- biomethane --- disruptive technology --- decarbonization --- innovation --- Power-to-Gas --- Power-to-Fuel --- P2M --- P2G --- P2F --- biomethanization --- biomethanation --- competitiveness --- hydrogen utilization --- Hungary --- Power-to-X --- Power-to-Hydrogen --- Power-to-Methane --- hydrogen --- methanation --- sector coupling --- sectoral integration --- energy transition --- eFuels --- electric fuels --- 100% renewable energy scenarios --- thermophilic biogas --- fed-batch reactor --- Methanothermobacter --- metagenome --- starvation --- H2 and CO2 conversion --- methane --- acetate
Choose an application
For a sustainable future, the need to use renewable sources to produce electricity is inevitable. Some of these sources—particularly the widely available solar power—are weather-dependent; therefore, utility-scale energy storage will be more and more important. These solar and wind power fluctuations range from minutes (passing cloud) to whole seasons (winter/summer differences). Short-term storage can be solved (at least theoretically) with batteries; however, seasonal storage—due to the amount of storable energy and the self-discharging of some storage methods—is still a challenge to be solved in the near future. We believe that biological Power-to-Methane technology—especially combined with biogas refinement—will be a significant player in the energy storage market within less than a decade. The technology produces high-purity methane, which can be considered—by using green energy and carbon dioxide of biological origin—as a Renewable Natural Gas, or RNG. The ease of storage and use of methane, as well as the effective carbon-freeness, can make it a competitor for batteries or hydrogen-based storage, especially for storage times exceeding several months.
seasonal energy storage --- power-to-methane --- wastewater treatment plants --- techno-economic assessment --- power-to-gas --- regulation --- energy storage --- biogas --- biomethane --- disruptive technology --- decarbonization --- innovation --- Power-to-Gas --- Power-to-Fuel --- P2M --- P2G --- P2F --- biomethanization --- biomethanation --- competitiveness --- hydrogen utilization --- Hungary --- Power-to-X --- Power-to-Hydrogen --- Power-to-Methane --- hydrogen --- methanation --- sector coupling --- sectoral integration --- energy transition --- eFuels --- electric fuels --- 100% renewable energy scenarios --- thermophilic biogas --- fed-batch reactor --- Methanothermobacter --- metagenome --- starvation --- H2 and CO2 conversion --- methane --- acetate --- n/a
Choose an application
For a sustainable future, the need to use renewable sources to produce electricity is inevitable. Some of these sources—particularly the widely available solar power—are weather-dependent; therefore, utility-scale energy storage will be more and more important. These solar and wind power fluctuations range from minutes (passing cloud) to whole seasons (winter/summer differences). Short-term storage can be solved (at least theoretically) with batteries; however, seasonal storage—due to the amount of storable energy and the self-discharging of some storage methods—is still a challenge to be solved in the near future. We believe that biological Power-to-Methane technology—especially combined with biogas refinement—will be a significant player in the energy storage market within less than a decade. The technology produces high-purity methane, which can be considered—by using green energy and carbon dioxide of biological origin—as a Renewable Natural Gas, or RNG. The ease of storage and use of methane, as well as the effective carbon-freeness, can make it a competitor for batteries or hydrogen-based storage, especially for storage times exceeding several months.
Technology: general issues --- History of engineering & technology --- seasonal energy storage --- power-to-methane --- wastewater treatment plants --- techno-economic assessment --- power-to-gas --- regulation --- energy storage --- biogas --- biomethane --- disruptive technology --- decarbonization --- innovation --- Power-to-Gas --- Power-to-Fuel --- P2M --- P2G --- P2F --- biomethanization --- biomethanation --- competitiveness --- hydrogen utilization --- Hungary --- Power-to-X --- Power-to-Hydrogen --- Power-to-Methane --- hydrogen --- methanation --- sector coupling --- sectoral integration --- energy transition --- eFuels --- electric fuels --- 100% renewable energy scenarios --- thermophilic biogas --- fed-batch reactor --- Methanothermobacter --- metagenome --- starvation --- H2 and CO2 conversion --- methane --- acetate --- n/a
Listing 1 - 3 of 3 |
Sort by
|