Narrow your search
Listing 1 - 6 of 6
Sort by

Book
Methods to assess the effects of chemicals on ecosystems
Authors: --- --- --- ---
ISBN: 0471959111 9780471959113 Year: 1995 Volume: 23 53 10 Publisher: Chichester : Wiley,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Safety culture : assessing and changing the behaviour of organisations
Author:
ISBN: 1409401278 9786612857584 1409401286 1282857584 9781409401285 9781282857582 9781409401278 Year: 2010 Publisher: Farnham, England : Gower,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Safety culture is a complex social/scientific concept and Dr. Taylor demystifies it with reference to theory normally associated with mainstream business development and change processes. Sections of the book deal with using safety culture theory as a predictive model, the assessment of safety culture, and how to influence culture change to produce the desired organisational behaviours. This is a practically focused book from an author with vast experience at the top level of high hazard industries.


Book
Fungal Pigments 2021
Author:
ISBN: 303655811X 3036558128 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

New edition of the reprint Fungal pigments: Chapters titles: PART 1. Investigation on various chemical classes of fungal pigments: Genomic Analysis and Assessment of Melanin Synthesis in Amorphotheca resinae by Jeong-Joo Oh et al.; Fungal Melanins and Applications in Healthcare, Bioremediation and Industry by Ellie Rose Mattoon et al.; Recent Findings in Azaphilone Pigments by Lúcia P. S. Pimenta et al.; Characterization of a Biofilm Bioreactor Designed for the Single-Step Production of Aerial Conidia and Oosporein by Beauveria bassiana PQ2 by Héctor Raziel Lara-Juache et al.; PART 2. Molecular characterization: Molecular Characterization of Fungal Pigments by Miriam S. Valenzuela-Gloria et al.; PART 3. Biological properties: Seven New Cytotoxic and Antimicrobial Xanthoquinodins from Jugulospora vestita by Lulu Shao et al.; PART 4. Toxicity assessment and safety evaluation of fungal pigments: Safety Evaluation of Fungal Pigments for Food Applications by Rajendran Poorniammal et al.; Preliminary Examination of the Toxicity of Spalting Fungal Pigments: A Comparison between Extraction Methods by Badria H. Almurshidi et al.; PART 5. Use of by-products or waste for industrial production of fungal pigments: Production of Bio-Based Pigments from Food Processing Industry By-Products Using Aspergillus carbonarius by Ezgi Bezirhan Arikan et al.; PART 6. Prospective aspects and brainstorming: Does Structural Color Exist in True Fungi? by Juliet Brodie et al.; Fungal Biomarkers Stability in Mars Regolith Analogues after Simulated Space and Mars-like Conditions by Alessia Cassaro et al.


Book
Actuators for Intelligent Electric Vehicles
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs.

Keywords

Technology: general issues --- History of engineering & technology --- Mechanical engineering & materials --- curb detection --- intelligent vehicles --- autonomous driving --- electro-hydraulic brake system --- master cylinder pressure estimation --- vehicle longitudinal dynamics --- brake linings’ coefficient of friction --- ACC --- safety evaluation --- human-like evaluation --- naturalistic driving study --- driving behavior characteristic --- electric vehicles --- independent drive --- direct yaw control --- torque distribution --- ultra-wideband --- relative localization --- enhanced precision --- clock self-correction --- homotopy --- Levenberg–Marquardt --- electric power steering --- steering actuator --- driverless racing vehicles --- control --- autonomous vehicles --- lane-changing --- decision-making --- path planning --- four-wheel independent drive --- four-wheel independent steering --- path tracking --- handling stability --- active safety control --- electric vehicle --- intelligent sanitation vehicle --- trash can-handling robot --- truss structure --- multi-objective parameter optimization --- topology optimization --- discrete optimization --- multiple load cases --- intelligent electric vehicles --- driver behavior recognition --- multi-semantic description --- confidence fusion --- drift parking --- open-loop control --- supervision mechanism --- two-speed AMT --- in-wheel-drive --- shifting process --- selectable one-way clutch --- five-degree-of-freedom vehicle model --- pressure–position model --- recursive least square --- advanced driver assistant systems --- adaptive cruise control --- direct yaw moment control --- extension control --- model predictive control --- optimization design --- vehicle structure design --- uncertainty --- deceleration device --- tyre-road peak friction coefficient estimation --- tyre model --- normalization --- incentive sensitivity --- four-wheel steering --- semantic segmentation --- high-resolution atlas training --- super-resolution --- curb detection --- intelligent vehicles --- autonomous driving --- electro-hydraulic brake system --- master cylinder pressure estimation --- vehicle longitudinal dynamics --- brake linings’ coefficient of friction --- ACC --- safety evaluation --- human-like evaluation --- naturalistic driving study --- driving behavior characteristic --- electric vehicles --- independent drive --- direct yaw control --- torque distribution --- ultra-wideband --- relative localization --- enhanced precision --- clock self-correction --- homotopy --- Levenberg–Marquardt --- electric power steering --- steering actuator --- driverless racing vehicles --- control --- autonomous vehicles --- lane-changing --- decision-making --- path planning --- four-wheel independent drive --- four-wheel independent steering --- path tracking --- handling stability --- active safety control --- electric vehicle --- intelligent sanitation vehicle --- trash can-handling robot --- truss structure --- multi-objective parameter optimization --- topology optimization --- discrete optimization --- multiple load cases --- intelligent electric vehicles --- driver behavior recognition --- multi-semantic description --- confidence fusion --- drift parking --- open-loop control --- supervision mechanism --- two-speed AMT --- in-wheel-drive --- shifting process --- selectable one-way clutch --- five-degree-of-freedom vehicle model --- pressure–position model --- recursive least square --- advanced driver assistant systems --- adaptive cruise control --- direct yaw moment control --- extension control --- model predictive control --- optimization design --- vehicle structure design --- uncertainty --- deceleration device --- tyre-road peak friction coefficient estimation --- tyre model --- normalization --- incentive sensitivity --- four-wheel steering --- semantic segmentation --- high-resolution atlas training --- super-resolution


Book
Actuators for Intelligent Electric Vehicles
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs.

Keywords

Technology: general issues --- History of engineering & technology --- Mechanical engineering & materials --- curb detection --- intelligent vehicles --- autonomous driving --- electro-hydraulic brake system --- master cylinder pressure estimation --- vehicle longitudinal dynamics --- brake linings’ coefficient of friction --- ACC --- safety evaluation --- human-like evaluation --- naturalistic driving study --- driving behavior characteristic --- electric vehicles --- independent drive --- direct yaw control --- torque distribution --- ultra-wideband --- relative localization --- enhanced precision --- clock self-correction --- homotopy --- Levenberg–Marquardt --- electric power steering --- steering actuator --- driverless racing vehicles --- control --- autonomous vehicles --- lane-changing --- decision-making --- path planning --- four-wheel independent drive --- four-wheel independent steering --- path tracking --- handling stability --- active safety control --- electric vehicle --- intelligent sanitation vehicle --- trash can-handling robot --- truss structure --- multi-objective parameter optimization --- topology optimization --- discrete optimization --- multiple load cases --- intelligent electric vehicles --- driver behavior recognition --- multi-semantic description --- confidence fusion --- drift parking --- open-loop control --- supervision mechanism --- two-speed AMT --- in-wheel-drive --- shifting process --- selectable one-way clutch --- five-degree-of-freedom vehicle model --- pressure–position model --- recursive least square --- advanced driver assistant systems --- adaptive cruise control --- direct yaw moment control --- extension control --- model predictive control --- optimization design --- vehicle structure design --- uncertainty --- deceleration device --- tyre-road peak friction coefficient estimation --- tyre model --- normalization --- incentive sensitivity --- four-wheel steering --- semantic segmentation --- high-resolution atlas training --- super-resolution


Book
Actuators for Intelligent Electric Vehicles
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs.

Keywords

curb detection --- intelligent vehicles --- autonomous driving --- electro-hydraulic brake system --- master cylinder pressure estimation --- vehicle longitudinal dynamics --- brake linings’ coefficient of friction --- ACC --- safety evaluation --- human-like evaluation --- naturalistic driving study --- driving behavior characteristic --- electric vehicles --- independent drive --- direct yaw control --- torque distribution --- ultra-wideband --- relative localization --- enhanced precision --- clock self-correction --- homotopy --- Levenberg–Marquardt --- electric power steering --- steering actuator --- driverless racing vehicles --- control --- autonomous vehicles --- lane-changing --- decision-making --- path planning --- four-wheel independent drive --- four-wheel independent steering --- path tracking --- handling stability --- active safety control --- electric vehicle --- intelligent sanitation vehicle --- trash can-handling robot --- truss structure --- multi-objective parameter optimization --- topology optimization --- discrete optimization --- multiple load cases --- intelligent electric vehicles --- driver behavior recognition --- multi-semantic description --- confidence fusion --- drift parking --- open-loop control --- supervision mechanism --- two-speed AMT --- in-wheel-drive --- shifting process --- selectable one-way clutch --- five-degree-of-freedom vehicle model --- pressure–position model --- recursive least square --- advanced driver assistant systems --- adaptive cruise control --- direct yaw moment control --- extension control --- model predictive control --- optimization design --- vehicle structure design --- uncertainty --- deceleration device --- tyre-road peak friction coefficient estimation --- tyre model --- normalization --- incentive sensitivity --- four-wheel steering --- semantic segmentation --- high-resolution atlas training --- super-resolution

Listing 1 - 6 of 6
Sort by