Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The rapid urbanization, sometimes lacking adequate planning and design, has led to worsening city syndrome situations, such as urban flooding, water pollution, heat island effects, and ecologic deterioration. Sponge city construction have become the new paradigm for a sustainable urban stormwater management strategy. Deviating from the traditional rapid draining approach, the new paradigm calls for the use of natural systems, such as soil and vegetation, as part of the urban runoff control strategy. It has become a widespread focus in urban water management research and practices globally. In this Special Issue reprint, there are 13 original scientific articles that address the different related urban runoff control issues. We are happy to see that all papers presented findings characterized as innovative and methodologically new. We hope that the readers can enjoy and learn deeply about urban runoff control and sponge city construction using the published material, and we hope that sharing of the researches results with the scientific community, policymakers and stakeholders can prompt the urban runoff control and sponge city construction globally.
Technology: general issues --- History of engineering & technology --- urban runoff remediation --- Talipariti tiliaceum --- modular bioretention tree --- field study --- tree-pit --- Green-Ampt method --- infiltration --- overland flow --- urban flood modelling --- 1D/2D coupled modelling --- dual drainage modelling --- extreme rainfall --- flooding --- safety criteria --- urban drainage --- uncertainty --- combined sewer overflows --- optimization --- SWMM --- NSGA-III --- sponge city --- bioretention facility --- rain infiltration --- slope stability --- urban water management --- drainage function --- permeable pavement --- biological retention --- control-oriented model --- urban drainage system --- real-time optimization --- Simuwater --- Sponge City --- aquifer recharge --- urban stormwater --- green infrastructure --- low impact development --- Sustainable Development Goals --- non-point source pollution --- enhanced dephosphorization bioretention --- modified bioretention facility --- road stormwater runoff --- combined soil filter media --- soil moisture conservation rope --- microbial diversity --- urban stormwater runoff management --- field monitoring --- ABC Waters design features --- water quality --- bioretention --- swales --- low-impact development --- pilot exploration --- systematic demonstration --- construction scale --- stakeholders --- multifunctional decision-making framework --- cost-effectiveness --- site suitability --- stakeholders’ preference --- n/a --- stakeholders' preference
Choose an application
The rapid urbanization, sometimes lacking adequate planning and design, has led to worsening city syndrome situations, such as urban flooding, water pollution, heat island effects, and ecologic deterioration. Sponge city construction have become the new paradigm for a sustainable urban stormwater management strategy. Deviating from the traditional rapid draining approach, the new paradigm calls for the use of natural systems, such as soil and vegetation, as part of the urban runoff control strategy. It has become a widespread focus in urban water management research and practices globally. In this Special Issue reprint, there are 13 original scientific articles that address the different related urban runoff control issues. We are happy to see that all papers presented findings characterized as innovative and methodologically new. We hope that the readers can enjoy and learn deeply about urban runoff control and sponge city construction using the published material, and we hope that sharing of the researches results with the scientific community, policymakers and stakeholders can prompt the urban runoff control and sponge city construction globally.
urban runoff remediation --- Talipariti tiliaceum --- modular bioretention tree --- field study --- tree-pit --- Green-Ampt method --- infiltration --- overland flow --- urban flood modelling --- 1D/2D coupled modelling --- dual drainage modelling --- extreme rainfall --- flooding --- safety criteria --- urban drainage --- uncertainty --- combined sewer overflows --- optimization --- SWMM --- NSGA-III --- sponge city --- bioretention facility --- rain infiltration --- slope stability --- urban water management --- drainage function --- permeable pavement --- biological retention --- control-oriented model --- urban drainage system --- real-time optimization --- Simuwater --- Sponge City --- aquifer recharge --- urban stormwater --- green infrastructure --- low impact development --- Sustainable Development Goals --- non-point source pollution --- enhanced dephosphorization bioretention --- modified bioretention facility --- road stormwater runoff --- combined soil filter media --- soil moisture conservation rope --- microbial diversity --- urban stormwater runoff management --- field monitoring --- ABC Waters design features --- water quality --- bioretention --- swales --- low-impact development --- pilot exploration --- systematic demonstration --- construction scale --- stakeholders --- multifunctional decision-making framework --- cost-effectiveness --- site suitability --- stakeholders’ preference --- n/a --- stakeholders' preference
Choose an application
The rapid urbanization, sometimes lacking adequate planning and design, has led to worsening city syndrome situations, such as urban flooding, water pollution, heat island effects, and ecologic deterioration. Sponge city construction have become the new paradigm for a sustainable urban stormwater management strategy. Deviating from the traditional rapid draining approach, the new paradigm calls for the use of natural systems, such as soil and vegetation, as part of the urban runoff control strategy. It has become a widespread focus in urban water management research and practices globally. In this Special Issue reprint, there are 13 original scientific articles that address the different related urban runoff control issues. We are happy to see that all papers presented findings characterized as innovative and methodologically new. We hope that the readers can enjoy and learn deeply about urban runoff control and sponge city construction using the published material, and we hope that sharing of the researches results with the scientific community, policymakers and stakeholders can prompt the urban runoff control and sponge city construction globally.
Technology: general issues --- History of engineering & technology --- urban runoff remediation --- Talipariti tiliaceum --- modular bioretention tree --- field study --- tree-pit --- Green-Ampt method --- infiltration --- overland flow --- urban flood modelling --- 1D/2D coupled modelling --- dual drainage modelling --- extreme rainfall --- flooding --- safety criteria --- urban drainage --- uncertainty --- combined sewer overflows --- optimization --- SWMM --- NSGA-III --- sponge city --- bioretention facility --- rain infiltration --- slope stability --- urban water management --- drainage function --- permeable pavement --- biological retention --- control-oriented model --- urban drainage system --- real-time optimization --- Simuwater --- Sponge City --- aquifer recharge --- urban stormwater --- green infrastructure --- low impact development --- Sustainable Development Goals --- non-point source pollution --- enhanced dephosphorization bioretention --- modified bioretention facility --- road stormwater runoff --- combined soil filter media --- soil moisture conservation rope --- microbial diversity --- urban stormwater runoff management --- field monitoring --- ABC Waters design features --- water quality --- bioretention --- swales --- low-impact development --- pilot exploration --- systematic demonstration --- construction scale --- stakeholders --- multifunctional decision-making framework --- cost-effectiveness --- site suitability --- stakeholders' preference
Choose an application
Currently, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia. The book encompasses the kinematic and dynamic modelling, analysis, design, and control of mechatronic and robotic systems, with the scope of improving their performance, as well as simulating and testing novel devices and control architectures. A broad range of disciplines and topics are included, such as robotic manipulation, mobile systems, cable-driven robots, wearable and rehabilitation devices, variable stiffness safety-oriented mechanisms, optimization of robot performance, and energy-saving systems.
Technology: general issues --- bionic mechanism design --- synthesis --- exoskeleton --- finger motion rehabilitation --- super-twisting control law --- robot manipulators --- fast terminal sliding mode control --- semi-active seat suspension --- integrated model --- control --- fuzzy logic-based self-tuning --- PID --- super-twisting --- sliding mode extended state observer --- saturation function --- fuzzy logic --- attenuate disturbance --- pHRI --- variable stiffness actuator --- V2SOM --- friendly cobots --- safety criteria --- human-robot collisions --- underwater vehicle-manipulator system --- motion planning --- coordinated motion control --- inertial delay control --- fuzzy compensator --- extended Kalman filter --- feedback linearization --- CPG --- self-growing network --- quadruped robot --- trot gait --- directional index --- serial robot --- performance evaluation --- kinematics --- hydraulic press --- energy saving --- energy efficiency --- installed power --- processing performance --- space robotics --- planetary surface exploration --- terrain awareness --- mechanics of vehicle-terrain interaction --- vehicle dynamics --- multi-support shaft system vibration control --- combined simulation --- transverse bending vibration --- Smart Spring --- adaptive control --- hydraulics --- differential cylinder --- feedforward --- motion control --- manipulator arm --- trajectory optimization --- "whip-lashing" method --- reduction of cycle time --- trajectory planning --- SolidWorks and MATLAB software applications --- dynamic modeling --- multibody simulation --- robotic lander --- variable radius drum --- impact analysis --- cable-driven parallel robots --- cable-suspended robots --- dynamic workspace --- throwing robots --- casting robot --- redesign --- slider-crank mechanism --- optimization --- synthesis problem --- rehabilitation devices --- six-wheel drive (6WD) --- skid steering --- electric unmanned ground vehicle (EUGV) --- driving force distribution --- vehicle motion control --- maneuverability and stability --- hexapod robot --- path planning --- energy consumption --- cost of transport --- heuristic optimization --- mobile robots --- tractor-trailer --- wheel slip compensation --- gait optimization --- genetic algorithm --- quadrupedal locomotion --- evolutionary programming --- optimal contact forces --- micro aerial vehicles --- visual-based control --- Kalman filter
Choose an application
Currently, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia. The book encompasses the kinematic and dynamic modelling, analysis, design, and control of mechatronic and robotic systems, with the scope of improving their performance, as well as simulating and testing novel devices and control architectures. A broad range of disciplines and topics are included, such as robotic manipulation, mobile systems, cable-driven robots, wearable and rehabilitation devices, variable stiffness safety-oriented mechanisms, optimization of robot performance, and energy-saving systems.
Technology: general issues --- bionic mechanism design --- synthesis --- exoskeleton --- finger motion rehabilitation --- super-twisting control law --- robot manipulators --- fast terminal sliding mode control --- semi-active seat suspension --- integrated model --- control --- fuzzy logic-based self-tuning --- PID --- super-twisting --- sliding mode extended state observer --- saturation function --- fuzzy logic --- attenuate disturbance --- pHRI --- variable stiffness actuator --- V2SOM --- friendly cobots --- safety criteria --- human–robot collisions --- underwater vehicle-manipulator system --- motion planning --- coordinated motion control --- inertial delay control --- fuzzy compensator --- extended Kalman filter --- feedback linearization --- CPG --- self-growing network --- quadruped robot --- trot gait --- directional index --- serial robot --- performance evaluation --- kinematics --- hydraulic press --- energy saving --- energy efficiency --- installed power --- processing performance --- space robotics --- planetary surface exploration --- terrain awareness --- mechanics of vehicle–terrain interaction --- vehicle dynamics --- multi-support shaft system vibration control --- combined simulation --- transverse bending vibration --- Smart Spring --- adaptive control --- hydraulics --- differential cylinder --- feedforward --- motion control --- manipulator arm --- trajectory optimization --- “whip-lashing” method --- reduction of cycle time --- trajectory planning --- SolidWorks and MATLAB software applications --- dynamic modeling --- multibody simulation --- robotic lander --- variable radius drum --- impact analysis --- cable-driven parallel robots --- cable-suspended robots --- dynamic workspace --- throwing robots --- casting robot --- redesign --- slider-crank mechanism --- optimization --- synthesis problem --- rehabilitation devices --- six-wheel drive (6WD) --- skid steering --- electric unmanned ground vehicle (EUGV) --- driving force distribution --- vehicle motion control --- maneuverability and stability --- hexapod robot --- path planning --- energy consumption --- cost of transport --- heuristic optimization --- mobile robots --- tractor-trailer --- wheel slip compensation --- gait optimization --- genetic algorithm --- quadrupedal locomotion --- evolutionary programming --- optimal contact forces --- micro aerial vehicles --- visual-based control --- Kalman filter --- n/a --- human-robot collisions --- mechanics of vehicle-terrain interaction --- "whip-lashing" method
Choose an application
Currently, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia. The book encompasses the kinematic and dynamic modelling, analysis, design, and control of mechatronic and robotic systems, with the scope of improving their performance, as well as simulating and testing novel devices and control architectures. A broad range of disciplines and topics are included, such as robotic manipulation, mobile systems, cable-driven robots, wearable and rehabilitation devices, variable stiffness safety-oriented mechanisms, optimization of robot performance, and energy-saving systems.
bionic mechanism design --- synthesis --- exoskeleton --- finger motion rehabilitation --- super-twisting control law --- robot manipulators --- fast terminal sliding mode control --- semi-active seat suspension --- integrated model --- control --- fuzzy logic-based self-tuning --- PID --- super-twisting --- sliding mode extended state observer --- saturation function --- fuzzy logic --- attenuate disturbance --- pHRI --- variable stiffness actuator --- V2SOM --- friendly cobots --- safety criteria --- human–robot collisions --- underwater vehicle-manipulator system --- motion planning --- coordinated motion control --- inertial delay control --- fuzzy compensator --- extended Kalman filter --- feedback linearization --- CPG --- self-growing network --- quadruped robot --- trot gait --- directional index --- serial robot --- performance evaluation --- kinematics --- hydraulic press --- energy saving --- energy efficiency --- installed power --- processing performance --- space robotics --- planetary surface exploration --- terrain awareness --- mechanics of vehicle–terrain interaction --- vehicle dynamics --- multi-support shaft system vibration control --- combined simulation --- transverse bending vibration --- Smart Spring --- adaptive control --- hydraulics --- differential cylinder --- feedforward --- motion control --- manipulator arm --- trajectory optimization --- “whip-lashing” method --- reduction of cycle time --- trajectory planning --- SolidWorks and MATLAB software applications --- dynamic modeling --- multibody simulation --- robotic lander --- variable radius drum --- impact analysis --- cable-driven parallel robots --- cable-suspended robots --- dynamic workspace --- throwing robots --- casting robot --- redesign --- slider-crank mechanism --- optimization --- synthesis problem --- rehabilitation devices --- six-wheel drive (6WD) --- skid steering --- electric unmanned ground vehicle (EUGV) --- driving force distribution --- vehicle motion control --- maneuverability and stability --- hexapod robot --- path planning --- energy consumption --- cost of transport --- heuristic optimization --- mobile robots --- tractor-trailer --- wheel slip compensation --- gait optimization --- genetic algorithm --- quadrupedal locomotion --- evolutionary programming --- optimal contact forces --- micro aerial vehicles --- visual-based control --- Kalman filter --- n/a --- human-robot collisions --- mechanics of vehicle-terrain interaction --- "whip-lashing" method
Listing 1 - 6 of 6 |
Sort by
|