Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Forest ecosystems are often disturbed by agents such as harvesting, fire, wind, insects and diseases, and acid deposition, with differing intensities and frequencies. Such disturbances can markedly affect the amount, form, and stability of soil organic carbon in, and the emission of greenhouse gases, including CO2, CH4, and N2O from, forest ecosystems. It is vitally important that we improve our understanding of the impact of different disturbance regimes on forest soil carbon dynamics and greenhouse gas emissions to guide our future research, forest management practices, and policy development. This Special Issue provides an important update on the disturbance effects on soil carbon and greenhouse gas emissions in forest ecosystems in different climate regions.
greenhouse gas emission --- heterotrophic respiration --- Camellia oleifera --- Larix principis-rupprechtii Mayr --- soil microbial residue --- assisted natural regeneration --- soil organic carbon --- soil carbon sequestration --- soil CO2 --- surface soil layer --- landform --- anthropogenic effect --- South Korea --- CO2 effluxes --- storm damage --- microbial properties --- calcareous soil --- land use pattern --- soil total nitrogen --- generation --- tree mortality --- land use types --- forest conversion --- DCD --- carbon source–sink --- stoichiometric ratios --- autotrophic respiration --- N2O --- CO2 emission --- organic carbon mineralization --- CH4 emissions --- clear-cutting --- CO2 production and diffusion --- soil quality --- nitrification inhibitor --- organic carbon accumulation --- climate change mitigation --- global change --- greenhouse gas inventory --- warming --- soil properties --- bacterial community --- sensitivity --- soil characteristics --- forest --- insect outbreak --- biochar --- nitrous oxide --- CO2 --- soil respiration --- land-use change --- decomposition --- soil --- natural forest --- calcareous soils --- greenhouse gas --- forest soils --- karst graben basin --- plantation --- rocky desertification --- fitting parameters --- temperature --- forest disturbance --- microbe --- subtropical forest --- N addition --- carbon stock changes --- IPCC --- next-generation sequencing --- nitrogen --- N2O emissions --- red soils --- CH4 --- coastal wetlands --- CO2 emissions --- stand age --- successive planting --- plum plantation ages
Choose an application
Rapid urbanization and industrialization have progressively caused severe impacts on the mountainous, river, coastal environments, and have increased the risks for people living in these areas. Human activities have changed the ecosystems, and, hence, it is important to determine ways to predict these consequences to enable the preservation and restoration of these key areas. Furthermore, extreme events attributed to climate change are becoming more frequent, aggravating the entire scenario and introducing ulterior uncertainties for the accurate and efficient management of these areas to protect the environment, as well as the health and safety of people. Climate change is altering the rain and extreme heat, as well as inducing other weather mutations. All these lead to more frequent natural disasters such as flood events, erosions, and contamination and spreading of pollutants. Therefore, efforts need to be devoted to investigating the underlying causes, and to identifying feasible mitigation and adaptation strategies to reduce the negative impacts on both the environment and citizens. In support of this aim, the selected papers in this book covered a wide range of issues that are mainly relevant to the following: i) the numerical and experimental characterization of complex flow conditions under specific circumstances induced by the natural hazards; ii) the effect of climate change on the hydrological processes in the mountainous, river and coastal environments, iii) the protection of ecosystems and the restoration of areas damaged by the effects of the climate change and human activities.
check dam --- hydrologic response --- sediment transport --- InHM --- Loess Plateau --- stratification effect --- inertia effect --- secondary flow --- meandering --- sediment laden flows --- pier scour --- non-uniform sediment --- armor layer --- equilibrium scour depth processes --- clear water scour condition --- suffusion --- internal stability --- grain size distribution (GSD) --- ecological operation --- multi-scale --- decomposition-coordination --- hydrologic alterations --- embankments --- overtopping failure --- material point method --- water–soil interactions --- numerical simulation --- SPH (Smoothed Particle Hydrodynamics) --- water-related natural hazards --- sediment scouring --- dense granular flow --- fast landslide --- surge wave --- flooding on complex topography --- HPC (High Performance Computing) --- FOSS (Free Open Source Software) --- climate change --- water levels --- causes and implications --- Qinghai Lake, Tibetan Plateau --- rainfall patterns --- rainfall-runoff --- soil erosion --- slope length --- slope gradient --- non-homogeneous debris flow --- viscous coefficients --- intermittent debris flows --- energy conversion --- focusing waves --- wave amplitude spectra --- space-time parameter --- experimental investigations --- InVEST model --- wetland --- ecosystem service assessment --- value analysis --- schistosomiasis prevention --- ISPH --- liquid sloshing --- water jet flow --- impact pressure --- excitation frequency --- Navier-Stokes equation --- SST k-ω turbulence model --- vortex-induced vibration (VIV) --- Arbitrary Lagrangian Eulerian (ALE) method --- finite element method (FEM) --- rock–soil contact area --- fissure flow --- karst rocky desertification --- runoff --- rainfall simulation --- Smooth Particle Hydrodynamics (SPH) --- porous media --- mathematical model --- coastal structure --- ocean and engineering --- turbulence --- emergent vegetation --- flexible vegetation --- rigid vegetation --- coherent structures --- shear layer --- elastic actuator line model --- OpenFOAM --- NREL 5 MW wind turbine --- aeroelastic performance --- check dam system --- sedimentary land --- flood control --- dam break --- SWE --- SPH --- openMP --- numerical modelling --- computational time --- experimental modelling --- scouring --- smoothed-particle hydrodynamics --- flooding --- dam-break --- debris flows --- urban evolution --- natural hazard
Choose an application
Rapid urbanization and industrialization have progressively caused severe impacts on the mountainous, river, coastal environments, and have increased the risks for people living in these areas. Human activities have changed the ecosystems, and, hence, it is important to determine ways to predict these consequences to enable the preservation and restoration of these key areas. Furthermore, extreme events attributed to climate change are becoming more frequent, aggravating the entire scenario and introducing ulterior uncertainties for the accurate and efficient management of these areas to protect the environment, as well as the health and safety of people. Climate change is altering the rain and extreme heat, as well as inducing other weather mutations. All these lead to more frequent natural disasters such as flood events, erosions, and contamination and spreading of pollutants. Therefore, efforts need to be devoted to investigating the underlying causes, and to identifying feasible mitigation and adaptation strategies to reduce the negative impacts on both the environment and citizens. In support of this aim, the selected papers in this book covered a wide range of issues that are mainly relevant to the following: i) the numerical and experimental characterization of complex flow conditions under specific circumstances induced by the natural hazards; ii) the effect of climate change on the hydrological processes in the mountainous, river and coastal environments, iii) the protection of ecosystems and the restoration of areas damaged by the effects of the climate change and human activities.
Research & information: general --- check dam --- hydrologic response --- sediment transport --- InHM --- Loess Plateau --- stratification effect --- inertia effect --- secondary flow --- meandering --- sediment laden flows --- pier scour --- non-uniform sediment --- armor layer --- equilibrium scour depth processes --- clear water scour condition --- suffusion --- internal stability --- grain size distribution (GSD) --- ecological operation --- multi-scale --- decomposition-coordination --- hydrologic alterations --- embankments --- overtopping failure --- material point method --- water–soil interactions --- numerical simulation --- SPH (Smoothed Particle Hydrodynamics) --- water-related natural hazards --- sediment scouring --- dense granular flow --- fast landslide --- surge wave --- flooding on complex topography --- HPC (High Performance Computing) --- FOSS (Free Open Source Software) --- climate change --- water levels --- causes and implications --- Qinghai Lake, Tibetan Plateau --- rainfall patterns --- rainfall-runoff --- soil erosion --- slope length --- slope gradient --- non-homogeneous debris flow --- viscous coefficients --- intermittent debris flows --- energy conversion --- focusing waves --- wave amplitude spectra --- space-time parameter --- experimental investigations --- InVEST model --- wetland --- ecosystem service assessment --- value analysis --- schistosomiasis prevention --- ISPH --- liquid sloshing --- water jet flow --- impact pressure --- excitation frequency --- Navier-Stokes equation --- SST k-ω turbulence model --- vortex-induced vibration (VIV) --- Arbitrary Lagrangian Eulerian (ALE) method --- finite element method (FEM) --- rock–soil contact area --- fissure flow --- karst rocky desertification --- runoff --- rainfall simulation --- Smooth Particle Hydrodynamics (SPH) --- porous media --- mathematical model --- coastal structure --- ocean and engineering --- turbulence --- emergent vegetation --- flexible vegetation --- rigid vegetation --- coherent structures --- shear layer --- elastic actuator line model --- OpenFOAM --- NREL 5 MW wind turbine --- aeroelastic performance --- check dam system --- sedimentary land --- flood control --- dam break --- SWE --- SPH --- openMP --- numerical modelling --- computational time --- experimental modelling --- scouring --- smoothed-particle hydrodynamics --- flooding --- dam-break --- debris flows --- urban evolution --- natural hazard
Listing 1 - 3 of 3 |
Sort by
|