Listing 1 - 7 of 7 |
Sort by
|
Choose an application
After a certain spell of dry weather, rain on the road can make the surface even more slippery. This is due mainly to surface contamination such as oil or dust, polluting the water and resulting in poor gripping of the road by the tires. In fact, as the contaminants substantially influence the viscosity and/or the surface tension, they also affect the surface-wetting property of the water; and this will eventually cause a severe decrease in the tire/road grip.
nasse Fahrbahn --- Reifen-Fahrbahn-Reibung --- wet surface --- Zwischenmedium --- intermediary substance --- wetting behaviour --- Oberflächenspannung --- surface tension --- Benetzungsverhalten --- tire-road-friction
Choose an application
Recent trends in vehicle engineering are testament to the great efforts that scientists and industries have made to seek solutions to enhance both the performance and safety of vehicular systems. This Special Issue aims to contribute to the study of modern vehicle dynamics, attracting recent experimental and in-simulation advances that are the basis for current technological growth and future mobility. The area involves research, studies, and projects derived from vehicle dynamics that aim to enhance vehicle performance in terms of handling, comfort, and adherence, and to examine safety optimization in the emerging contexts of smart, connected, and autonomous driving.This Special Issue focuses on new findings in the following topics:(1) Experimental and modelling activities that aim to investigate interaction phenomena from the macroscale, analyzing vehicle data, to the microscale, accounting for local contact mechanics; (2) Control strategies focused on vehicle performance enhancement, in terms of handling/grip, comfort and safety for passengers, motorsports, and future mobility scenarios; (3) Innovative technologies to improve the safety and performance of the vehicle and its subsystems; (4) Identification of vehicle and tire/wheel model parameters and status with innovative methodologies and algorithms; (5) Implementation of real-time software, logics, and models in onboard architectures and driving simulators; (6) Studies and analyses oriented toward the correlation among the factors affecting vehicle performance and safety; (7) Application use cases in road and off-road vehicles, e-bikes, motorcycles, buses, trucks, etc.
Technology: general issues --- History of engineering & technology --- tire model parameters identification --- artificial neural networks --- curve fitting --- Pacejka’s magic formula --- intelligent vehicles --- autonomous vehicles --- microscopic traffic simulation --- autonomous driving --- friction estimate --- tire-based control --- ADAS --- potential friction --- energy consumption and recovery --- transmission layouts --- fuel-cell electric vehicles --- adhesion enhancement --- dimple model --- patterned surfaces --- viscoelasticity --- enhancement --- articulated vehicles --- stability analysis --- nonlinear dynamic model --- snake instability --- eigenvalue analysis --- central control --- non-linear model-based predictive control --- pitch behavior --- predictive control --- roll behavior --- self-steering behavior --- vehicle dynamics --- viscoelastic modulus --- rubber --- friction --- empirical modeling --- autonomous emergency steering --- multi-input multi-output model predictive control --- actuator dynamics --- control allocation --- handling enhancement --- road friction --- wear --- tyre --- suspension --- semi-active --- handling --- comfort --- optimisation --- directional stability --- road profile --- road unevenness --- vehicle-road interaction --- vertical vehicle excitation --- tire models --- tire tread --- motorcycle --- rider --- screw axis --- weave --- wobble --- multibody --- gravel pavement --- roughness --- straightedge --- power spectral density --- international roughness index --- vehicle response --- driving comfort --- sky-hook --- in-wheel motor --- semi-active suspension --- quarter-car model --- suspension performance --- suspension test bench --- vehicle stability --- road models --- quarter car models --- limit cycles --- acceleration speed portraits --- speed oscillations --- velocity bifurcations --- noisy limit cycles --- limit flows of trajectories --- Sommerfeld effects --- differential-algebraic systems --- polar coordinates of roads --- covariance equations --- stability in mean --- supercritical speeds --- analytical travel speed amplitudes --- Floquet theory applied to limit cycles --- non-pneumatic tire --- finite element analysis --- steady state analysis --- tire characterization --- footprint --- contact patch --- longitudinal interaction --- n/a --- Pacejka's magic formula
Choose an application
Recent trends in vehicle engineering are testament to the great efforts that scientists and industries have made to seek solutions to enhance both the performance and safety of vehicular systems. This Special Issue aims to contribute to the study of modern vehicle dynamics, attracting recent experimental and in-simulation advances that are the basis for current technological growth and future mobility. The area involves research, studies, and projects derived from vehicle dynamics that aim to enhance vehicle performance in terms of handling, comfort, and adherence, and to examine safety optimization in the emerging contexts of smart, connected, and autonomous driving.This Special Issue focuses on new findings in the following topics:(1) Experimental and modelling activities that aim to investigate interaction phenomena from the macroscale, analyzing vehicle data, to the microscale, accounting for local contact mechanics; (2) Control strategies focused on vehicle performance enhancement, in terms of handling/grip, comfort and safety for passengers, motorsports, and future mobility scenarios; (3) Innovative technologies to improve the safety and performance of the vehicle and its subsystems; (4) Identification of vehicle and tire/wheel model parameters and status with innovative methodologies and algorithms; (5) Implementation of real-time software, logics, and models in onboard architectures and driving simulators; (6) Studies and analyses oriented toward the correlation among the factors affecting vehicle performance and safety; (7) Application use cases in road and off-road vehicles, e-bikes, motorcycles, buses, trucks, etc.
tire model parameters identification --- artificial neural networks --- curve fitting --- Pacejka’s magic formula --- intelligent vehicles --- autonomous vehicles --- microscopic traffic simulation --- autonomous driving --- friction estimate --- tire-based control --- ADAS --- potential friction --- energy consumption and recovery --- transmission layouts --- fuel-cell electric vehicles --- adhesion enhancement --- dimple model --- patterned surfaces --- viscoelasticity --- enhancement --- articulated vehicles --- stability analysis --- nonlinear dynamic model --- snake instability --- eigenvalue analysis --- central control --- non-linear model-based predictive control --- pitch behavior --- predictive control --- roll behavior --- self-steering behavior --- vehicle dynamics --- viscoelastic modulus --- rubber --- friction --- empirical modeling --- autonomous emergency steering --- multi-input multi-output model predictive control --- actuator dynamics --- control allocation --- handling enhancement --- road friction --- wear --- tyre --- suspension --- semi-active --- handling --- comfort --- optimisation --- directional stability --- road profile --- road unevenness --- vehicle-road interaction --- vertical vehicle excitation --- tire models --- tire tread --- motorcycle --- rider --- screw axis --- weave --- wobble --- multibody --- gravel pavement --- roughness --- straightedge --- power spectral density --- international roughness index --- vehicle response --- driving comfort --- sky-hook --- in-wheel motor --- semi-active suspension --- quarter-car model --- suspension performance --- suspension test bench --- vehicle stability --- road models --- quarter car models --- limit cycles --- acceleration speed portraits --- speed oscillations --- velocity bifurcations --- noisy limit cycles --- limit flows of trajectories --- Sommerfeld effects --- differential-algebraic systems --- polar coordinates of roads --- covariance equations --- stability in mean --- supercritical speeds --- analytical travel speed amplitudes --- Floquet theory applied to limit cycles --- non-pneumatic tire --- finite element analysis --- steady state analysis --- tire characterization --- footprint --- contact patch --- longitudinal interaction --- n/a --- Pacejka's magic formula
Choose an application
Recent trends in vehicle engineering are testament to the great efforts that scientists and industries have made to seek solutions to enhance both the performance and safety of vehicular systems. This Special Issue aims to contribute to the study of modern vehicle dynamics, attracting recent experimental and in-simulation advances that are the basis for current technological growth and future mobility. The area involves research, studies, and projects derived from vehicle dynamics that aim to enhance vehicle performance in terms of handling, comfort, and adherence, and to examine safety optimization in the emerging contexts of smart, connected, and autonomous driving.This Special Issue focuses on new findings in the following topics:(1) Experimental and modelling activities that aim to investigate interaction phenomena from the macroscale, analyzing vehicle data, to the microscale, accounting for local contact mechanics; (2) Control strategies focused on vehicle performance enhancement, in terms of handling/grip, comfort and safety for passengers, motorsports, and future mobility scenarios; (3) Innovative technologies to improve the safety and performance of the vehicle and its subsystems; (4) Identification of vehicle and tire/wheel model parameters and status with innovative methodologies and algorithms; (5) Implementation of real-time software, logics, and models in onboard architectures and driving simulators; (6) Studies and analyses oriented toward the correlation among the factors affecting vehicle performance and safety; (7) Application use cases in road and off-road vehicles, e-bikes, motorcycles, buses, trucks, etc.
Technology: general issues --- History of engineering & technology --- tire model parameters identification --- artificial neural networks --- curve fitting --- Pacejka's magic formula --- intelligent vehicles --- autonomous vehicles --- microscopic traffic simulation --- autonomous driving --- friction estimate --- tire-based control --- ADAS --- potential friction --- energy consumption and recovery --- transmission layouts --- fuel-cell electric vehicles --- adhesion enhancement --- dimple model --- patterned surfaces --- viscoelasticity --- enhancement --- articulated vehicles --- stability analysis --- nonlinear dynamic model --- snake instability --- eigenvalue analysis --- central control --- non-linear model-based predictive control --- pitch behavior --- predictive control --- roll behavior --- self-steering behavior --- vehicle dynamics --- viscoelastic modulus --- rubber --- friction --- empirical modeling --- autonomous emergency steering --- multi-input multi-output model predictive control --- actuator dynamics --- control allocation --- handling enhancement --- road friction --- wear --- tyre --- suspension --- semi-active --- handling --- comfort --- optimisation --- directional stability --- road profile --- road unevenness --- vehicle-road interaction --- vertical vehicle excitation --- tire models --- tire tread --- motorcycle --- rider --- screw axis --- weave --- wobble --- multibody --- gravel pavement --- roughness --- straightedge --- power spectral density --- international roughness index --- vehicle response --- driving comfort --- sky-hook --- in-wheel motor --- semi-active suspension --- quarter-car model --- suspension performance --- suspension test bench --- vehicle stability --- road models --- quarter car models --- limit cycles --- acceleration speed portraits --- speed oscillations --- velocity bifurcations --- noisy limit cycles --- limit flows of trajectories --- Sommerfeld effects --- differential-algebraic systems --- polar coordinates of roads --- covariance equations --- stability in mean --- supercritical speeds --- analytical travel speed amplitudes --- Floquet theory applied to limit cycles --- non-pneumatic tire --- finite element analysis --- steady state analysis --- tire characterization --- footprint --- contact patch --- longitudinal interaction
Choose an application
This book presents the results of the successful Sensors Special Issue on Intelligent Vehicles that received submissions between March 2019 and May 2020. The Guest Editors of this Special Issue are Dr. David Fernández-Llorca, Dr. Ignacio Parra-Alonso, Dr. Iván García-Daza and Dr. Noelia Parra-Alonso, all from the Computer Engineering Department at the University of Alcalá (Madrid, Spain). A total of 32 manuscripts were finally accepted between 2019 and 2020, presented by top researchers from all over the world. The reader will find a well-representative set of current research and developments related to sensors and sensing for intelligent vehicles. The topics of the published manuscripts can be grouped into seven main categories: (1) assistance systems and automatic vehicle operation, (2) vehicle positioning and localization, (3) fault diagnosis and fail-x systems, (4) perception and scene understanding, (5) smart regenerative braking systems for electric vehicles, (6) driver behavior modeling and (7) intelligent sensing. We, the Guest Editors, hope that the readers will find this book to contain interesting papers for their research, papers that they will enjoy reading as much as we have enjoyed organizing this Special Issue
History of engineering & technology --- tracking-by-detection --- multi-vehicle tracking --- Siamese network --- data association --- Markov decision process --- driving behavior --- real-time monitoring --- driver distraction --- mobile application --- portable system --- simulation test --- dynamic driving behavior --- traffic scene augmentation --- corridor model --- IMU --- vision --- classification networks --- Hough transform --- lane markings detection --- semantic segmentation --- transfer learning --- autonomous --- off-road driving --- tire-road forces estimation --- slip angle estimation --- gauge sensors --- fuzzy logic system --- load transfer estimation --- simulation results --- normalization --- lateral force empirical model --- driver monitor --- lane departure --- statistical process control --- fault detection --- sensor fault --- signal restoration --- intelligent vehicle --- autonomous vehicle --- kinematic model --- visual SLAM --- sparse direct method --- photometric calibration --- corner detection and filtering --- loop closure detection --- road friction coefficient --- tire model --- nonlinear observer --- self-aligning torque --- lateral displacement --- Lyapunov method --- automatic parking system (APS) --- end-to-end parking --- reinforcement learning --- parking slot tracking --- deceleration planning --- multi-layer perceptron --- smart regenerative braking --- electric vehicles --- vehicle speed prediction --- driver behavior modeling --- electric vehicle control --- driver characteristics online learning --- objects’ edge detection --- stixel histograms accumulate --- point cloud segmentation --- autonomous vehicles --- scene understanding --- occlusion reasoning --- road detection --- advanced driver assistance system --- trajectory prediction --- risk assessment --- collision warning --- connected vehicles --- vehicular communications --- vulnerable road users --- fail-operational systems --- fall-back strategy --- automated driving --- advanced driving assistance systems --- illumination --- shadow detection --- shadow edge --- image processing --- traffic light detection --- intelligent transportation system --- lane-changing --- merging maneuvers --- game theory --- decision-making --- intelligent vehicles --- model predictive controller --- automatic train operation --- softness factor --- fusion velocity --- online obtaining --- hardware-in-the-loop simulation --- driving assistant --- driving diagnosis --- accident risk maps --- driving safety --- intelligent driving --- virtual test environment --- millimeter wave radar --- lane-change decision --- risk perception --- mixed traffic --- minimum safe deceleration --- automated driving system (ADS) --- sensor fusion --- multi-lane detection --- particle filter --- self-driving car --- unscented Kalman filter --- vehicle model --- Monte Carlo localization --- millimeter-wave radar --- square-root cubature Kalman filter --- Sage-Husa algorithm --- target tracking --- stationary and moving object classification --- localization --- LiDAR --- GNSS --- Global Positioning System (GPS) --- monte carlo --- autonomous driving --- robot motion --- path planning --- piecewise linear approximation --- multiple-target path planning --- autonomous mobile robot --- homotopy based path planning --- LiDAR signal processing --- sensor and information fusion --- advanced driver assistance systems --- autonomous racing --- high-speed camera --- real-time systems --- LiDAR odometry --- fail-aware --- sensors --- sensing --- percepction --- object detection and tracking --- scene segmentation --- vehicle positioning --- fail-x systems --- driver behavior modelling --- automatic operation
Choose an application
This book presents the results of the successful Sensors Special Issue on Intelligent Vehicles that received submissions between March 2019 and May 2020. The Guest Editors of this Special Issue are Dr. David Fernández-Llorca, Dr. Ignacio Parra-Alonso, Dr. Iván García-Daza and Dr. Noelia Parra-Alonso, all from the Computer Engineering Department at the University of Alcalá (Madrid, Spain). A total of 32 manuscripts were finally accepted between 2019 and 2020, presented by top researchers from all over the world. The reader will find a well-representative set of current research and developments related to sensors and sensing for intelligent vehicles. The topics of the published manuscripts can be grouped into seven main categories: (1) assistance systems and automatic vehicle operation, (2) vehicle positioning and localization, (3) fault diagnosis and fail-x systems, (4) perception and scene understanding, (5) smart regenerative braking systems for electric vehicles, (6) driver behavior modeling and (7) intelligent sensing. We, the Guest Editors, hope that the readers will find this book to contain interesting papers for their research, papers that they will enjoy reading as much as we have enjoyed organizing this Special Issue
tracking-by-detection --- multi-vehicle tracking --- Siamese network --- data association --- Markov decision process --- driving behavior --- real-time monitoring --- driver distraction --- mobile application --- portable system --- simulation test --- dynamic driving behavior --- traffic scene augmentation --- corridor model --- IMU --- vision --- classification networks --- Hough transform --- lane markings detection --- semantic segmentation --- transfer learning --- autonomous --- off-road driving --- tire-road forces estimation --- slip angle estimation --- gauge sensors --- fuzzy logic system --- load transfer estimation --- simulation results --- normalization --- lateral force empirical model --- driver monitor --- lane departure --- statistical process control --- fault detection --- sensor fault --- signal restoration --- intelligent vehicle --- autonomous vehicle --- kinematic model --- visual SLAM --- sparse direct method --- photometric calibration --- corner detection and filtering --- loop closure detection --- road friction coefficient --- tire model --- nonlinear observer --- self-aligning torque --- lateral displacement --- Lyapunov method --- automatic parking system (APS) --- end-to-end parking --- reinforcement learning --- parking slot tracking --- deceleration planning --- multi-layer perceptron --- smart regenerative braking --- electric vehicles --- vehicle speed prediction --- driver behavior modeling --- electric vehicle control --- driver characteristics online learning --- objects’ edge detection --- stixel histograms accumulate --- point cloud segmentation --- autonomous vehicles --- scene understanding --- occlusion reasoning --- road detection --- advanced driver assistance system --- trajectory prediction --- risk assessment --- collision warning --- connected vehicles --- vehicular communications --- vulnerable road users --- fail-operational systems --- fall-back strategy --- automated driving --- advanced driving assistance systems --- illumination --- shadow detection --- shadow edge --- image processing --- traffic light detection --- intelligent transportation system --- lane-changing --- merging maneuvers --- game theory --- decision-making --- intelligent vehicles --- model predictive controller --- automatic train operation --- softness factor --- fusion velocity --- online obtaining --- hardware-in-the-loop simulation --- driving assistant --- driving diagnosis --- accident risk maps --- driving safety --- intelligent driving --- virtual test environment --- millimeter wave radar --- lane-change decision --- risk perception --- mixed traffic --- minimum safe deceleration --- automated driving system (ADS) --- sensor fusion --- multi-lane detection --- particle filter --- self-driving car --- unscented Kalman filter --- vehicle model --- Monte Carlo localization --- millimeter-wave radar --- square-root cubature Kalman filter --- Sage-Husa algorithm --- target tracking --- stationary and moving object classification --- localization --- LiDAR --- GNSS --- Global Positioning System (GPS) --- monte carlo --- autonomous driving --- robot motion --- path planning --- piecewise linear approximation --- multiple-target path planning --- autonomous mobile robot --- homotopy based path planning --- LiDAR signal processing --- sensor and information fusion --- advanced driver assistance systems --- autonomous racing --- high-speed camera --- real-time systems --- LiDAR odometry --- fail-aware --- sensors --- sensing --- percepction --- object detection and tracking --- scene segmentation --- vehicle positioning --- fail-x systems --- driver behavior modelling --- automatic operation
Choose an application
This book presents the results of the successful Sensors Special Issue on Intelligent Vehicles that received submissions between March 2019 and May 2020. The Guest Editors of this Special Issue are Dr. David Fernández-Llorca, Dr. Ignacio Parra-Alonso, Dr. Iván García-Daza and Dr. Noelia Parra-Alonso, all from the Computer Engineering Department at the University of Alcalá (Madrid, Spain). A total of 32 manuscripts were finally accepted between 2019 and 2020, presented by top researchers from all over the world. The reader will find a well-representative set of current research and developments related to sensors and sensing for intelligent vehicles. The topics of the published manuscripts can be grouped into seven main categories: (1) assistance systems and automatic vehicle operation, (2) vehicle positioning and localization, (3) fault diagnosis and fail-x systems, (4) perception and scene understanding, (5) smart regenerative braking systems for electric vehicles, (6) driver behavior modeling and (7) intelligent sensing. We, the Guest Editors, hope that the readers will find this book to contain interesting papers for their research, papers that they will enjoy reading as much as we have enjoyed organizing this Special Issue
History of engineering & technology --- tracking-by-detection --- multi-vehicle tracking --- Siamese network --- data association --- Markov decision process --- driving behavior --- real-time monitoring --- driver distraction --- mobile application --- portable system --- simulation test --- dynamic driving behavior --- traffic scene augmentation --- corridor model --- IMU --- vision --- classification networks --- Hough transform --- lane markings detection --- semantic segmentation --- transfer learning --- autonomous --- off-road driving --- tire-road forces estimation --- slip angle estimation --- gauge sensors --- fuzzy logic system --- load transfer estimation --- simulation results --- normalization --- lateral force empirical model --- driver monitor --- lane departure --- statistical process control --- fault detection --- sensor fault --- signal restoration --- intelligent vehicle --- autonomous vehicle --- kinematic model --- visual SLAM --- sparse direct method --- photometric calibration --- corner detection and filtering --- loop closure detection --- road friction coefficient --- tire model --- nonlinear observer --- self-aligning torque --- lateral displacement --- Lyapunov method --- automatic parking system (APS) --- end-to-end parking --- reinforcement learning --- parking slot tracking --- deceleration planning --- multi-layer perceptron --- smart regenerative braking --- electric vehicles --- vehicle speed prediction --- driver behavior modeling --- electric vehicle control --- driver characteristics online learning --- objects’ edge detection --- stixel histograms accumulate --- point cloud segmentation --- autonomous vehicles --- scene understanding --- occlusion reasoning --- road detection --- advanced driver assistance system --- trajectory prediction --- risk assessment --- collision warning --- connected vehicles --- vehicular communications --- vulnerable road users --- fail-operational systems --- fall-back strategy --- automated driving --- advanced driving assistance systems --- illumination --- shadow detection --- shadow edge --- image processing --- traffic light detection --- intelligent transportation system --- lane-changing --- merging maneuvers --- game theory --- decision-making --- intelligent vehicles --- model predictive controller --- automatic train operation --- softness factor --- fusion velocity --- online obtaining --- hardware-in-the-loop simulation --- driving assistant --- driving diagnosis --- accident risk maps --- driving safety --- intelligent driving --- virtual test environment --- millimeter wave radar --- lane-change decision --- risk perception --- mixed traffic --- minimum safe deceleration --- automated driving system (ADS) --- sensor fusion --- multi-lane detection --- particle filter --- self-driving car --- unscented Kalman filter --- vehicle model --- Monte Carlo localization --- millimeter-wave radar --- square-root cubature Kalman filter --- Sage-Husa algorithm --- target tracking --- stationary and moving object classification --- localization --- LiDAR --- GNSS --- Global Positioning System (GPS) --- monte carlo --- autonomous driving --- robot motion --- path planning --- piecewise linear approximation --- multiple-target path planning --- autonomous mobile robot --- homotopy based path planning --- LiDAR signal processing --- sensor and information fusion --- advanced driver assistance systems --- autonomous racing --- high-speed camera --- real-time systems --- LiDAR odometry --- fail-aware --- sensors --- sensing --- percepction --- object detection and tracking --- scene segmentation --- vehicle positioning --- fail-x systems --- driver behavior modelling --- automatic operation
Listing 1 - 7 of 7 |
Sort by
|