Narrow your search
Listing 1 - 10 of 73 << page
of 8
>>
Sort by

Book
Evolution of Gene Regulatory Networks in Plant Development
Authors: --- ---
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

During their life cycle plants undergo a wide variety of morphological and developmental changes. Impinging these developmental processes there is a layer of gene, protein and metabolic networks that are responsible for the initiation of the correct developmental transitions at the right time of the year to ensure plant life success. New omic technologies are allowing the acquisition of massive amount of data to develop holistic and integrative analysis to understand complex processes. Among them, Microarray, Next-generation Sequencing (NGS) and Proteomics are providing enormous amount of data from different plant species and developmental stages, thus allowing the analysis of gene networks globally. Besides, the comparison of molecular networks from different species is providing information on their evolutionary history, shedding light on the origin of many key genes/proteins. Moreover, developmental processes are not only genetically programed but are also affected by internal and external signals. Metabolism, light, hormone action, temperature, biotic and abiotic stresses, etc. have a deep effect on developmental programs. The interface and interplay between these internal and external circuits with developmental programs can be unraveled through the integration of systematic experimentation with the computational analysis of the generated omics data (Molecular Systems Biology). This Research Topic intends to deepen in the different plant developmental pathways and how the corresponding gene networks evolved from a Molecular Systems Biology perspective. Global approaches for photoperiod, circadian clock and hormone regulated processes; pattern formation, phase-transitions, organ development, etc. will provide new insights on how plant complexity was built during evolution. Understanding the interface and interplay between different regulatory networks will also provide fundamental information on plant biology and focus on those traits that may be important for next-generation agriculture.


Book
Evolution of Gene Regulatory Networks in Plant Development
Authors: --- ---
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

During their life cycle plants undergo a wide variety of morphological and developmental changes. Impinging these developmental processes there is a layer of gene, protein and metabolic networks that are responsible for the initiation of the correct developmental transitions at the right time of the year to ensure plant life success. New omic technologies are allowing the acquisition of massive amount of data to develop holistic and integrative analysis to understand complex processes. Among them, Microarray, Next-generation Sequencing (NGS) and Proteomics are providing enormous amount of data from different plant species and developmental stages, thus allowing the analysis of gene networks globally. Besides, the comparison of molecular networks from different species is providing information on their evolutionary history, shedding light on the origin of many key genes/proteins. Moreover, developmental processes are not only genetically programed but are also affected by internal and external signals. Metabolism, light, hormone action, temperature, biotic and abiotic stresses, etc. have a deep effect on developmental programs. The interface and interplay between these internal and external circuits with developmental programs can be unraveled through the integration of systematic experimentation with the computational analysis of the generated omics data (Molecular Systems Biology). This Research Topic intends to deepen in the different plant developmental pathways and how the corresponding gene networks evolved from a Molecular Systems Biology perspective. Global approaches for photoperiod, circadian clock and hormone regulated processes; pattern formation, phase-transitions, organ development, etc. will provide new insights on how plant complexity was built during evolution. Understanding the interface and interplay between different regulatory networks will also provide fundamental information on plant biology and focus on those traits that may be important for next-generation agriculture.


Book
Evolution of Gene Regulatory Networks in Plant Development
Authors: --- ---
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

During their life cycle plants undergo a wide variety of morphological and developmental changes. Impinging these developmental processes there is a layer of gene, protein and metabolic networks that are responsible for the initiation of the correct developmental transitions at the right time of the year to ensure plant life success. New omic technologies are allowing the acquisition of massive amount of data to develop holistic and integrative analysis to understand complex processes. Among them, Microarray, Next-generation Sequencing (NGS) and Proteomics are providing enormous amount of data from different plant species and developmental stages, thus allowing the analysis of gene networks globally. Besides, the comparison of molecular networks from different species is providing information on their evolutionary history, shedding light on the origin of many key genes/proteins. Moreover, developmental processes are not only genetically programed but are also affected by internal and external signals. Metabolism, light, hormone action, temperature, biotic and abiotic stresses, etc. have a deep effect on developmental programs. The interface and interplay between these internal and external circuits with developmental programs can be unraveled through the integration of systematic experimentation with the computational analysis of the generated omics data (Molecular Systems Biology). This Research Topic intends to deepen in the different plant developmental pathways and how the corresponding gene networks evolved from a Molecular Systems Biology perspective. Global approaches for photoperiod, circadian clock and hormone regulated processes; pattern formation, phase-transitions, organ development, etc. will provide new insights on how plant complexity was built during evolution. Understanding the interface and interplay between different regulatory networks will also provide fundamental information on plant biology and focus on those traits that may be important for next-generation agriculture.


Book
Cancer systems biology
Author:
ISBN: 9781439811856 Year: 2010 Publisher: Boca Raton : CRC Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Bacterial regulatory networks
Author:
ISBN: 9781908230034 1908230037 Year: 2012 Publisher: Norfolk, UK : Caister Academic Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Dissertation
Study of molecular mechanisms associated with the induction of phytotoxins in Streptomyces scabies
Authors: --- --- --- ---
Year: 2019 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

The members of the Streptomyces genus are mainly known for their high potential to produce secondary metabolites such as antibiotics, anti-cancer drugs, volatile organic compounds, herbicides. Mostly saprophytic, few exceptions have a phytopathogenic lifestyle, with S. scabies as a model species. Research on the pathogenicity of this bacteria - the predominant causal agent of the common scab (CS) disease – has begun more than 20 years ago. The phytotoxin thaxtomin A is the main virulence factor directly related to its pathogenic lifestyle, however many molecular mechanisms still remain misunderstood and ignored. Based on computational regulon prediction and proteomics, novel gene/protein candidates involved in the development of the virulent behaviour of S. scabies have been identified. In particular, a new hypothetical signalling pathway suggesting a tight link between the cello-oligosaccharides transport and the access to the host reservoir of starch has been proposed.&#13;The principal aim of this Master thesis was to investigate the role of two actors supposed to be involved in this pathway - the MalR regulator and the cytoplasmic component of the AfsQ1-AfsQ2 TCS -, evaluating the effects of their deletion through the PCR-targeting strategy. During this Master thesis we showed that these two important regulators certainly participate in the pathogenic lifestyle of S. scabies. The absence of MalR prevents S. scabies from perceiving the cellobiose as a signal to trigger virulence, while afsQ1 deletion resulted in increased toxin production rates, in a significant impairment of A. thaliana growth and in more severe pitting and necrosis of potato tuber slices.&#13;A further objective of this work aimed to generate new strains of S. scabies with improved thaxtomin production yields. Indeed, the properties of this phytotoxin made it a prime candidate as bioherbicide, however, nowadays the production costs are still too high for a large-scale application. Earlier works have shown that the mutation of either cebR or bglC genes resulted in an overproduction of thaxtomin A, therefore we have investigated the possibility that combining the deletion of both genes would turn in even higher production rates. The new generated strains are capable of producing significant toxin rates, however, although significant, did not exceed those of the single mutants.


Book
Analysis of Deterministic Cyclic Gene Regulatory Network Models with Delays
Authors: --- ---
ISBN: 9783319156064 3319156055 9783319156057 3319156063 Year: 2015 Publisher: Cham : Springer International Publishing : Imprint: Birkhäuser,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.


Book
Analysis and Design of Delayed Genetic Regulatory Networks
Authors: --- ---
ISBN: 3030170985 3030170977 Year: 2019 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book offers an essential introduction to the latest advances in delayed genetic regulatory networks (GRNs) and presents cutting-edge work on the analysis and design of delayed GRNs in which the system parameters are subject to uncertain, stochastic and/or parameter-varying changes. Specifically, the types examined include delayed switching GRNs, delayed stochastic GRNs, delayed reaction–diffusion GRNs, delayed discrete-time GRNs, etc. In addition, the solvability of stability analysis, control and estimation problems involving delayed GRNs are addressed in terms of linear matrix inequality or M-matrix tests. The book offers a comprehensive reference guide for researchers and practitioners working in system sciences and applied mathematics, and a valuable source of information for senior undergraduates and graduates in these areas. Further, it addresses a gap in the literature by providing a unified and concise framework for the analysis and design of delayed GRNs.


Book
Networks in cell biology
Author:
ISBN: 9780521882736 0521882737 9780511845086 9780511729720 0511729723 0511726430 9780511726439 0511845081 9780511727825 0511727828 1107211220 1282631403 9786612631405 0511728778 0511725019 Year: 2010 Publisher: Cambridge : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key leaders in both network theory and modern cell biology, this book discusses the network science that is increasingly foundational for systems biology and the quantitative understanding of living systems. It surveys studies in the quantitative structure and dynamics of genetic regulatory networks, molecular networks underlying cellular metabolism, and other fundamental biological processes. The book balances empirical studies and theory to give a unified overview of this interdisciplinary science. It is a key introductory text for graduate students and researchers in physics, biology and biochemistry, and presents ideas and techniques from fields outside the reader's own area of specialization.


Book
Modulating Prokaryotic Lifestyle by DNA-Binding Proteins
Authors: --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Overview of the Topic was the following: “One of the most active areas of research in molecular microbiology has been the study of how bacteria modulate their genetic activity and its consequences. The prokaryotic world has received much interest not only because the resulting phenomena are important to cells, but also because many of the effects often can be readily measured. Contributing to the interest of the present topic is the fact that modulation of gene activity involves the sensing of intra- and inter-cellular conditions, DNA binding and DNA dynamics, and interaction with the replication/transcription machinery of the cell. All of these processes are fundamental to the operation of a genetic entity and condition their lifestyle. Further, the discoveries achieved in the bacterial world have been of ample use in eukaryotes. In addition to the fundamental interest of understanding modulation of prokaryotic lifestyle by DNA-binding proteins, there is an added interest from the healthcare point of view. As it is well known the antibiotic-resistance strains of pathogenic bacteria are a major world problem, so that there is an urgent need of innovative technologies to tackle it. Most of the acquired resistances are spread by processes of horizontal gene transfer mediated by mobile elements in which DNA replication and gene expression are of basic interest. There is an imperative of finding new alternatives to the ‘classical’ way of treatment of bacterial infections and these new alternatives include the discovery of new drugs and of new bacterial targets. Nevertheless, these new alternatives will find a dead-end if we are unable to obtain a better understanding of the basic processes modulating bacterial gene expression. Our goal to achieve with this Topic of Frontiers is to accelerate our understanding of protein-DNA interactions. First, the topic will bring together several very active researchers in the study of gene replication, gene regulation, the strategies applied by the different proteins that participate in these processes, and their consequences. We will also acquire an in-depth knowledge of some of the mechanisms of gene regulation, gene transfer and gene replication. Further, the readers of the papers will realize the importance of the topic and will learn the most recent thinking, results, and approaches in the area”. We are fully confident that we have exceeded our expectations. Now we are proud to present the final output of the Topic, which is the eBook. It includes 24 articles contributed by 118 authors. As of today, Monday, 16th, January 2017, the total number of readings has reached 19,284, 14,921 article views, and 2,944 article downloads.

Listing 1 - 10 of 73 << page
of 8
>>
Sort by