Listing 1 - 5 of 5 |
Sort by
|
Choose an application
In recent years, improving the sustainability of the steel industry and reducing its CO2 emissions has become a global focus. To achieve this goal, further process optimization in terms of energy and resource efficiency and the development of new processes and process routes are necessary. Modeling and simulation have established themselves as invaluable sources of information for otherwise unknown process parameters and as an alternative to plant trials that involves lower costs, risks, and time. Models also open up new possibilities for model-based control of metallurgical processes. This Special Issue focuses on recent advances in the modeling and simulation of unit processes in iron and steelmaking. It includes reviews on the fundamentals of modeling and simulation of metallurgical processes, as well as contributions from the areas of iron reduction/ironmaking, steelmaking via the primary and secondary route, and continuous casting.
Technology: general issues --- History of engineering & technology --- liquid metals --- bubble generation --- bubble size distribution --- porous plugs --- bubble deformation --- drag force --- lift force --- mathematical modelling --- computational fluid dynamic --- slag heat recovery --- heat exchanger --- drying --- slag energy content --- heat recovery technology --- RecHeat --- rotary kiln --- reduction process --- numerical simulation --- pre-reduction --- scrap preheating --- electric arc furnace --- continuous charging --- turbulence modelling --- RANS/LES/DNS --- inflow condition --- model validation --- model application --- energy demand --- regression --- artificial neural network --- Gaussian process regression --- Köhle formula --- evaluation model --- quantitative relationship --- scrap melting --- mass transfer coefficient --- steelmaking process --- direct current --- arc impingement --- arc gap --- gas density --- electric arc --- magneto hydrodynamics --- computational fluid dynamics --- real-time model --- estimation --- model predictive control --- steel refining --- mathematical modeling --- carbon composite briquette --- blast furnace ironmaking --- reaction kinetics --- coke saving --- direct reduction --- Midrex --- HYL --- Rist diagram --- energy consumption --- profile optimization --- modelling --- machine learning --- steelmaking --- fuzzy modelling --- evolving modelling --- continuous casting --- near net shape casting --- twin roll (Bessemer) casting --- horizontal single belt casting --- n/a --- Köhle formula
Choose an application
This Special Issue and Book, ‘Latest Hydroforming Technology of Metallic Tubes and Sheets’, includes 16 papers, which cover the state of the art of forming technologies in the relevant topics in the field. The technologies and methodologies presented in these papers will be very helpful for scientists, engineers, and technicians in product development or forming technology innovation related to tube hydroforming processes.
Technology: general issues --- tube hydroforming --- small-diameter tube --- magnesium alloy --- warm working --- deformation characteristics --- forming defects --- forming limit --- bellows forming --- vision-based sensor --- fuzzy control --- semi-dieless forming --- local heating --- metal spinning --- tube forming --- incremental forming --- numerical control --- hydroforming --- overlapping blank --- variable-diameter part --- thickness --- ultra-thin walled tube --- tube bending --- laminated mandrel --- rotary draw bending --- Finite Element Analysis (FEA) --- deformation property --- lightweight structure --- bending --- formability --- numerical methods --- processing technology --- crash safety --- hot bending --- partial-quench --- FEM --- strip friction test --- friction coefficient --- surface roughness --- sliding speed --- contact pressure --- movable die --- loading path --- finite element simulation --- irregular bellows --- metal tube --- planetary ball dies --- diameter reduction process --- forming limits --- biaxial stretching --- forming limit measurement --- experimental design --- strain rate sensitivity --- elevated temperatures --- pneumatic forming --- drawing --- flaring --- tube expansion --- plug drawing --- thickness reduction --- hydro-flanging --- punch head shape --- finite element analysis --- alumimum alloy --- tube bulging test --- formability test --- biaxial strain --- local rubber bulging --- cutout shape --- slit length --- two-layer tube --- rigid plasticity --- arbitrary yield criterion --- arbitrary hardening law --- analytic solution --- magnesium alloy tube --- warm hydroforming --- non-uniform temperature field --- protrusion type forming --- wall thickness distribution --- coupled thermal-structural analysis --- optimization --- tube hydroforming --- small-diameter tube --- magnesium alloy --- warm working --- deformation characteristics --- forming defects --- forming limit --- bellows forming --- vision-based sensor --- fuzzy control --- semi-dieless forming --- local heating --- metal spinning --- tube forming --- incremental forming --- numerical control --- hydroforming --- overlapping blank --- variable-diameter part --- thickness --- ultra-thin walled tube --- tube bending --- laminated mandrel --- rotary draw bending --- Finite Element Analysis (FEA) --- deformation property --- lightweight structure --- bending --- formability --- numerical methods --- processing technology --- crash safety --- hot bending --- partial-quench --- FEM --- strip friction test --- friction coefficient --- surface roughness --- sliding speed --- contact pressure --- movable die --- loading path --- finite element simulation --- irregular bellows --- metal tube --- planetary ball dies --- diameter reduction process --- forming limits --- biaxial stretching --- forming limit measurement --- experimental design --- strain rate sensitivity --- elevated temperatures --- pneumatic forming --- drawing --- flaring --- tube expansion --- plug drawing --- thickness reduction --- hydro-flanging --- punch head shape --- finite element analysis --- alumimum alloy --- tube bulging test --- formability test --- biaxial strain --- local rubber bulging --- cutout shape --- slit length --- two-layer tube --- rigid plasticity --- arbitrary yield criterion --- arbitrary hardening law --- analytic solution --- magnesium alloy tube --- warm hydroforming --- non-uniform temperature field --- protrusion type forming --- wall thickness distribution --- coupled thermal-structural analysis --- optimization
Choose an application
This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis.
Technology: general issues --- History of engineering & technology --- process monitoring --- dynamics --- variable time lag --- dynamic autoregressive latent variables model --- sintering process --- hammerstein output-error systems --- auxiliary model --- multi-innovation identification theory --- fractional-order calculus theory --- canonical variate analysis --- disturbance detection --- power transmission system --- k-nearest neighbor analysis --- statistical local analysis --- intelligent fault diagnosis --- stacked pruning sparse denoising autoencoder --- convolutional neural network --- anti-noise --- flywheel fault diagnosis --- belief rule base --- fuzzy fault tree analysis --- Bayesian network --- evidential reasoning --- aluminum reduction process --- alumina concentration --- subspace identification --- distributed predictive control --- spatiotemporal feature fusion --- gated recurrent unit --- attention mechanism --- fault diagnosis --- evidential reasoning rule --- system modelling --- information transformation --- parameter optimization --- event-triggered control --- interval type-2 Takagi–Sugeno fuzzy model --- nonlinear networked systems --- filter --- gearbox fault diagnosis --- convolution fusion --- state identification --- PSO --- wavelet mutation --- LSSVM --- data-driven --- operational optimization --- case-based reasoning --- local outlier factor --- abnormal case removal --- bearing fault detection --- deep residual network --- data augmentation --- canonical correlation analysis --- just-in-time learning --- fault detection --- high-speed trains --- autonomous underwater vehicle --- thruster fault diagnostics --- fault tolerant control --- robust optimization --- ocean currents --- n/a --- interval type-2 Takagi-Sugeno fuzzy model
Choose an application
This Special Issue and Book, ‘Latest Hydroforming Technology of Metallic Tubes and Sheets’, includes 16 papers, which cover the state of the art of forming technologies in the relevant topics in the field. The technologies and methodologies presented in these papers will be very helpful for scientists, engineers, and technicians in product development or forming technology innovation related to tube hydroforming processes.
Technology: general issues --- tube hydroforming --- small-diameter tube --- magnesium alloy --- warm working --- deformation characteristics --- forming defects --- forming limit --- bellows forming --- vision-based sensor --- fuzzy control --- semi-dieless forming --- local heating --- metal spinning --- tube forming --- incremental forming --- numerical control --- hydroforming --- overlapping blank --- variable-diameter part --- thickness --- ultra-thin walled tube --- tube bending --- laminated mandrel --- rotary draw bending --- Finite Element Analysis (FEA) --- deformation property --- lightweight structure --- bending --- formability --- numerical methods --- processing technology --- crash safety --- hot bending --- partial-quench --- FEM --- strip friction test --- friction coefficient --- surface roughness --- sliding speed --- contact pressure --- movable die --- loading path --- finite element simulation --- irregular bellows --- metal tube --- planetary ball dies --- diameter reduction process --- forming limits --- biaxial stretching --- forming limit measurement --- experimental design --- strain rate sensitivity --- elevated temperatures --- pneumatic forming --- drawing --- flaring --- tube expansion --- plug drawing --- thickness reduction --- hydro-flanging --- punch head shape --- finite element analysis --- alumimum alloy --- tube bulging test --- formability test --- biaxial strain --- local rubber bulging --- cutout shape --- slit length --- two-layer tube --- rigid plasticity --- arbitrary yield criterion --- arbitrary hardening law --- analytic solution --- magnesium alloy tube --- warm hydroforming --- non-uniform temperature field --- protrusion type forming --- wall thickness distribution --- coupled thermal-structural analysis --- optimization --- n/a
Choose an application
This Special Issue and Book, ‘Latest Hydroforming Technology of Metallic Tubes and Sheets’, includes 16 papers, which cover the state of the art of forming technologies in the relevant topics in the field. The technologies and methodologies presented in these papers will be very helpful for scientists, engineers, and technicians in product development or forming technology innovation related to tube hydroforming processes.
tube hydroforming --- small-diameter tube --- magnesium alloy --- warm working --- deformation characteristics --- forming defects --- forming limit --- bellows forming --- vision-based sensor --- fuzzy control --- semi-dieless forming --- local heating --- metal spinning --- tube forming --- incremental forming --- numerical control --- hydroforming --- overlapping blank --- variable-diameter part --- thickness --- ultra-thin walled tube --- tube bending --- laminated mandrel --- rotary draw bending --- Finite Element Analysis (FEA) --- deformation property --- lightweight structure --- bending --- formability --- numerical methods --- processing technology --- crash safety --- hot bending --- partial-quench --- FEM --- strip friction test --- friction coefficient --- surface roughness --- sliding speed --- contact pressure --- movable die --- loading path --- finite element simulation --- irregular bellows --- metal tube --- planetary ball dies --- diameter reduction process --- forming limits --- biaxial stretching --- forming limit measurement --- experimental design --- strain rate sensitivity --- elevated temperatures --- pneumatic forming --- drawing --- flaring --- tube expansion --- plug drawing --- thickness reduction --- hydro-flanging --- punch head shape --- finite element analysis --- alumimum alloy --- tube bulging test --- formability test --- biaxial strain --- local rubber bulging --- cutout shape --- slit length --- two-layer tube --- rigid plasticity --- arbitrary yield criterion --- arbitrary hardening law --- analytic solution --- magnesium alloy tube --- warm hydroforming --- non-uniform temperature field --- protrusion type forming --- wall thickness distribution --- coupled thermal-structural analysis --- optimization --- n/a
Listing 1 - 5 of 5 |
Sort by
|