Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.
Technology: general issues --- metabolite sensors --- sensor biocompatibility --- ion selective electrodes --- foreign body reaction --- O2 --- glucose --- lactate --- biosensors --- bioelectrochemistry --- photo-biosensors --- enzyme --- biocatalysis --- electrochemical biosensors --- real-time --- continuous operation --- reagentless --- reusable --- calibration-free --- antibiofouling --- biosensor --- biomimetic membranes --- membrane-bound enzymes --- electrodes --- sulfur-containing nanomaterials --- metallic sulfide nanomaterials --- sulfur-containing quantum dots --- enzyme-based biosensors --- direct electron transfer (DET) --- redox enzymes --- nanostructured electrodes --- protein film voltammetry (PFV) --- glucose biosensors --- nanoporous metals --- nanoporous gold --- graphene --- carbon nanotube --- ordered mesoporous carbon --- additive manufacturing --- heme --- peroxidases --- semiconductors --- peroxidase mimics --- DNA assay --- nucleic acid --- isothermal --- signal amplification --- restriction endonuclease --- wearable biosensors --- metabolism --- remote monitoring --- sweat --- microfluidic --- 3D printing --- nanoparticle --- nanocomposite --- nanozyme --- synthesis --- catalytic properties --- nano-peroxidase --- nanooxidase --- nanolaccase --- electronanocatalyst --- amperometric (bio)sensors --- POC --- microfluidics --- immunosensor --- cancer --- biomarkers --- electrochemical DNA sensor --- nucleic acid sensor --- DNA --- RNA --- pathogen sensing --- 2D-materials --- field-effect transistor --- transition metal dichalcogenides --- black phosphorus --- phosphorene --- hexagonal boron nitride --- transition metal oxides --- current-potential curve --- multi-enzymatic cascades --- multianalyte detection --- mass-transfer-controlled amperometric response --- potentiometric coulometry --- MXenes --- 2D nanomaterials --- wearables --- electrochemistry --- bacteria --- electrochemical ELISA --- electrochemical immunoassays --- electrochemical aptamer-based assays --- chemical sensor --- field effect --- capacitive EIS sensor --- pH sensor --- enzyme biosensor --- label-free detection --- charged molecules --- DNA biosensor --- protein detection --- forensics --- biometrics --- cybersecurity --- fingerprints --- blood --- cipher --- non-invasive biosensors --- human physiological fluids --- tears --- saliva --- urine --- metabolite sensors --- sensor biocompatibility --- ion selective electrodes --- foreign body reaction --- O2 --- glucose --- lactate --- biosensors --- bioelectrochemistry --- photo-biosensors --- enzyme --- biocatalysis --- electrochemical biosensors --- real-time --- continuous operation --- reagentless --- reusable --- calibration-free --- antibiofouling --- biosensor --- biomimetic membranes --- membrane-bound enzymes --- electrodes --- sulfur-containing nanomaterials --- metallic sulfide nanomaterials --- sulfur-containing quantum dots --- enzyme-based biosensors --- direct electron transfer (DET) --- redox enzymes --- nanostructured electrodes --- protein film voltammetry (PFV) --- glucose biosensors --- nanoporous metals --- nanoporous gold --- graphene --- carbon nanotube --- ordered mesoporous carbon --- additive manufacturing --- heme --- peroxidases --- semiconductors --- peroxidase mimics --- DNA assay --- nucleic acid --- isothermal --- signal amplification --- restriction endonuclease --- wearable biosensors --- metabolism --- remote monitoring --- sweat --- microfluidic --- 3D printing --- nanoparticle --- nanocomposite --- nanozyme --- synthesis --- catalytic properties --- nano-peroxidase --- nanooxidase --- nanolaccase --- electronanocatalyst --- amperometric (bio)sensors --- POC --- microfluidics --- immunosensor --- cancer --- biomarkers --- electrochemical DNA sensor --- nucleic acid sensor --- DNA --- RNA --- pathogen sensing --- 2D-materials --- field-effect transistor --- transition metal dichalcogenides --- black phosphorus --- phosphorene --- hexagonal boron nitride --- transition metal oxides --- current-potential curve --- multi-enzymatic cascades --- multianalyte detection --- mass-transfer-controlled amperometric response --- potentiometric coulometry --- MXenes --- 2D nanomaterials --- wearables --- electrochemistry --- bacteria --- electrochemical ELISA --- electrochemical immunoassays --- electrochemical aptamer-based assays --- chemical sensor --- field effect --- capacitive EIS sensor --- pH sensor --- enzyme biosensor --- label-free detection --- charged molecules --- DNA biosensor --- protein detection --- forensics --- biometrics --- cybersecurity --- fingerprints --- blood --- cipher --- non-invasive biosensors --- human physiological fluids --- tears --- saliva --- urine
Choose an application
The use of biocatalysts, including enzymes and metabolically engineered cells, has attracted a great deal of attention in the chemical and bio-industry, because biocatalytic reactions can be conducted under environmentally-benign conditions and in more sustainable ways. The catalytic efficiency and chemo-, regio-, and stereo-selectivity of enzymes can be enhanced and modulated using protein engineering. Metabolic engineering seeks to enhance cellular biosynthetic productivity of target metabolites via controlling and redesigning metabolic pathways using multi-omics analysis, genome-scale modeling, metabolic flux control, and reconstruction of novel pathways. The aim of this book is to cover the recent advances in biocatalysis and metabolic engineering for biomanufacturing of biofuels, chemicals, biomaterials, and pharmaceuticals. Reviews and original research articles on the development of new strategies to improve the catalytic efficiency of enzymes, biosynthetic capability of cell factories, and their applications in production of various bioproducts and chemicals are included.
n/a --- fluorescein diacetate --- Methylosinus sporium strain 5 --- soluble methane monooxygenase --- tunable expression system --- FTIR spectroscopy --- mevalonate kinase 1 --- poly(ethylene glycol) --- tetraethylene glycol --- review --- mevalonate (MVA) --- biofilm --- 5-hydroxymethylfurfural --- polymer functionalization --- microbial production --- microbial cell factory --- bio-hydrogen --- redox enzymes --- specific recognition --- fed-batch fermentation --- monoterpene --- Vitreoscilla --- Pvgb --- bioreactor --- 3-hydroxypropionic acid --- cascade reactions --- synthetic biology --- aerobic methane bioconversion --- starch hydrolysis --- CYP153A --- MEP pathway --- cross-linked enzyme aggregate --- interfacial activation --- expression vectors --- Combi-CLEAs --- polyethyleneimine --- bovine serum albumin --- polyurethane foam --- 12-hydroxydodecanoic acid --- MEV pathway --- amyloglucosidase --- total enzymatic activity --- Nylon 12 --- biocatalytic reaction --- Myceliophthora --- whole-cell biotransformation --- magnetic nanoparticles --- lipase immobilization --- Methanosarcina mazei --- biocatalysis --- acetate --- vgb --- C–H activation --- artificial self-sufficient P450 --- whole cell --- bioplastics --- Corynebacterium glutamicum --- chemicals addition --- enzyme modulation --- Eversa --- enzyme stabilization --- biocatalysts --- prokaryotic microbial factory --- synthetic metabolic pathways --- mannose --- immobilization --- (?)-?-bisabolol --- hydrogenase --- O2 activation --- string film reactor --- fatty acid synthesis --- ?-aminododecanoic acid --- transesterification --- mass transfer performance --- dodecanoic acid --- metabolic engineering --- glyoxal oxidase --- small molecules --- Candida antarctica Lipase B --- C-H activation
Choose an application
The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.
Technology: general issues --- metabolite sensors --- sensor biocompatibility --- ion selective electrodes --- foreign body reaction --- O2 --- glucose --- lactate --- biosensors --- bioelectrochemistry --- photo-biosensors --- enzyme --- biocatalysis --- electrochemical biosensors --- real-time --- continuous operation --- reagentless --- reusable --- calibration-free --- antibiofouling --- biosensor --- biomimetic membranes --- membrane-bound enzymes --- electrodes --- sulfur-containing nanomaterials --- metallic sulfide nanomaterials --- sulfur-containing quantum dots --- enzyme-based biosensors --- direct electron transfer (DET) --- redox enzymes --- nanostructured electrodes --- protein film voltammetry (PFV) --- glucose biosensors --- nanoporous metals --- nanoporous gold --- graphene --- carbon nanotube --- ordered mesoporous carbon --- additive manufacturing --- heme --- peroxidases --- semiconductors --- peroxidase mimics --- DNA assay --- nucleic acid --- isothermal --- signal amplification --- restriction endonuclease --- wearable biosensors --- metabolism --- remote monitoring --- sweat --- microfluidic --- 3D printing --- nanoparticle --- nanocomposite --- nanozyme --- synthesis --- catalytic properties --- nano-peroxidase --- nanooxidase --- nanolaccase --- electronanocatalyst --- amperometric (bio)sensors --- POC --- microfluidics --- immunosensor --- cancer --- biomarkers --- electrochemical DNA sensor --- nucleic acid sensor --- DNA --- RNA --- pathogen sensing --- 2D-materials --- field-effect transistor --- transition metal dichalcogenides --- black phosphorus --- phosphorene --- hexagonal boron nitride --- transition metal oxides --- current–potential curve --- multi-enzymatic cascades --- multianalyte detection --- mass-transfer-controlled amperometric response --- potentiometric coulometry --- MXenes --- 2D nanomaterials --- wearables --- electrochemistry --- bacteria --- electrochemical ELISA --- electrochemical immunoassays --- electrochemical aptamer-based assays --- chemical sensor --- field effect --- capacitive EIS sensor --- pH sensor --- enzyme biosensor --- label-free detection --- charged molecules --- DNA biosensor --- protein detection --- forensics --- biometrics --- cybersecurity --- fingerprints --- blood --- cipher --- non-invasive biosensors --- human physiological fluids --- tears --- saliva --- urine --- n/a --- current-potential curve
Choose an application
The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.
metabolite sensors --- sensor biocompatibility --- ion selective electrodes --- foreign body reaction --- O2 --- glucose --- lactate --- biosensors --- bioelectrochemistry --- photo-biosensors --- enzyme --- biocatalysis --- electrochemical biosensors --- real-time --- continuous operation --- reagentless --- reusable --- calibration-free --- antibiofouling --- biosensor --- biomimetic membranes --- membrane-bound enzymes --- electrodes --- sulfur-containing nanomaterials --- metallic sulfide nanomaterials --- sulfur-containing quantum dots --- enzyme-based biosensors --- direct electron transfer (DET) --- redox enzymes --- nanostructured electrodes --- protein film voltammetry (PFV) --- glucose biosensors --- nanoporous metals --- nanoporous gold --- graphene --- carbon nanotube --- ordered mesoporous carbon --- additive manufacturing --- heme --- peroxidases --- semiconductors --- peroxidase mimics --- DNA assay --- nucleic acid --- isothermal --- signal amplification --- restriction endonuclease --- wearable biosensors --- metabolism --- remote monitoring --- sweat --- microfluidic --- 3D printing --- nanoparticle --- nanocomposite --- nanozyme --- synthesis --- catalytic properties --- nano-peroxidase --- nanooxidase --- nanolaccase --- electronanocatalyst --- amperometric (bio)sensors --- POC --- microfluidics --- immunosensor --- cancer --- biomarkers --- electrochemical DNA sensor --- nucleic acid sensor --- DNA --- RNA --- pathogen sensing --- 2D-materials --- field-effect transistor --- transition metal dichalcogenides --- black phosphorus --- phosphorene --- hexagonal boron nitride --- transition metal oxides --- current–potential curve --- multi-enzymatic cascades --- multianalyte detection --- mass-transfer-controlled amperometric response --- potentiometric coulometry --- MXenes --- 2D nanomaterials --- wearables --- electrochemistry --- bacteria --- electrochemical ELISA --- electrochemical immunoassays --- electrochemical aptamer-based assays --- chemical sensor --- field effect --- capacitive EIS sensor --- pH sensor --- enzyme biosensor --- label-free detection --- charged molecules --- DNA biosensor --- protein detection --- forensics --- biometrics --- cybersecurity --- fingerprints --- blood --- cipher --- non-invasive biosensors --- human physiological fluids --- tears --- saliva --- urine --- n/a --- current-potential curve
Listing 1 - 4 of 4 |
Sort by
|