Listing 1 - 3 of 3 |
Sort by
|
Choose an application
There is increasingly intensive research for energy storage technologies development due to the enhanced energy needs of the contemporary societies. Increased global energy consumption results in the reduction in the availability of traditional energy resources, such as coal, oil and natural gas. Therefore, there is an urgent need for new systems development based on the conversion and storage of sustainable and clean energy. Phase change materials (PCMs) are one of the key components for the development of advanced sustainable solutions in renewable energy and engineering systems. In order to update the field of renewable energy and engineering systems with the use of PCMs, a Special Issue entitled “Phase Change Materials: Design and Applications” is introduced. This book gathers and reviews the collection of ten contributions (nine articles and one review), with authors from Europe, Asia and Americam accepted for publication in the aforementioned Special Issue of Applied Sciences.
Research & information: general --- Physics --- phase change materials --- thermal energy storage --- energy efficiency --- building applications --- construction materials --- phase-change material --- dispersion --- thermal-mechanical stability --- viscosity --- supercooling --- nucleating agent --- cold storage --- battery cooling --- LPMO --- Fourier Transform ac Voltammetry (FTacV) --- cyclic voltammetry --- Direct Electron Transfer (DET) --- lathrate hydrate --- tetrabutylammonium acrylate (TBAAc) --- crystal growth --- ultrasonic vibration --- polyurethane elastomers --- microencapsulated PCMs --- thermal properties --- mechanical properties --- phase change material --- sugar alcohol --- erythritol --- latent heat storage --- thermal stability --- degradation kinetics --- PCM --- mini-channels --- air --- melting --- solidification --- latent heat thermal energy storage --- phase change materials (PCM) --- macro-encapsulation --- rectangular slab --- experimental study --- sodium nitrate --- thermal conductivity --- microencapsulation --- latent heat --- multicriteria decision --- finite element --- automotive --- energy storage --- n/a
Choose an application
There is increasingly intensive research for energy storage technologies development due to the enhanced energy needs of the contemporary societies. Increased global energy consumption results in the reduction in the availability of traditional energy resources, such as coal, oil and natural gas. Therefore, there is an urgent need for new systems development based on the conversion and storage of sustainable and clean energy. Phase change materials (PCMs) are one of the key components for the development of advanced sustainable solutions in renewable energy and engineering systems. In order to update the field of renewable energy and engineering systems with the use of PCMs, a Special Issue entitled “Phase Change Materials: Design and Applications” is introduced. This book gathers and reviews the collection of ten contributions (nine articles and one review), with authors from Europe, Asia and Americam accepted for publication in the aforementioned Special Issue of Applied Sciences.
phase change materials --- thermal energy storage --- energy efficiency --- building applications --- construction materials --- phase-change material --- dispersion --- thermal-mechanical stability --- viscosity --- supercooling --- nucleating agent --- cold storage --- battery cooling --- LPMO --- Fourier Transform ac Voltammetry (FTacV) --- cyclic voltammetry --- Direct Electron Transfer (DET) --- lathrate hydrate --- tetrabutylammonium acrylate (TBAAc) --- crystal growth --- ultrasonic vibration --- polyurethane elastomers --- microencapsulated PCMs --- thermal properties --- mechanical properties --- phase change material --- sugar alcohol --- erythritol --- latent heat storage --- thermal stability --- degradation kinetics --- PCM --- mini-channels --- air --- melting --- solidification --- latent heat thermal energy storage --- phase change materials (PCM) --- macro-encapsulation --- rectangular slab --- experimental study --- sodium nitrate --- thermal conductivity --- microencapsulation --- latent heat --- multicriteria decision --- finite element --- automotive --- energy storage --- n/a
Choose an application
There is increasingly intensive research for energy storage technologies development due to the enhanced energy needs of the contemporary societies. Increased global energy consumption results in the reduction in the availability of traditional energy resources, such as coal, oil and natural gas. Therefore, there is an urgent need for new systems development based on the conversion and storage of sustainable and clean energy. Phase change materials (PCMs) are one of the key components for the development of advanced sustainable solutions in renewable energy and engineering systems. In order to update the field of renewable energy and engineering systems with the use of PCMs, a Special Issue entitled “Phase Change Materials: Design and Applications” is introduced. This book gathers and reviews the collection of ten contributions (nine articles and one review), with authors from Europe, Asia and Americam accepted for publication in the aforementioned Special Issue of Applied Sciences.
Research & information: general --- Physics --- phase change materials --- thermal energy storage --- energy efficiency --- building applications --- construction materials --- phase-change material --- dispersion --- thermal-mechanical stability --- viscosity --- supercooling --- nucleating agent --- cold storage --- battery cooling --- LPMO --- Fourier Transform ac Voltammetry (FTacV) --- cyclic voltammetry --- Direct Electron Transfer (DET) --- lathrate hydrate --- tetrabutylammonium acrylate (TBAAc) --- crystal growth --- ultrasonic vibration --- polyurethane elastomers --- microencapsulated PCMs --- thermal properties --- mechanical properties --- phase change material --- sugar alcohol --- erythritol --- latent heat storage --- thermal stability --- degradation kinetics --- PCM --- mini-channels --- air --- melting --- solidification --- latent heat thermal energy storage --- phase change materials (PCM) --- macro-encapsulation --- rectangular slab --- experimental study --- sodium nitrate --- thermal conductivity --- microencapsulation --- latent heat --- multicriteria decision --- finite element --- automotive --- energy storage --- phase change materials --- thermal energy storage --- energy efficiency --- building applications --- construction materials --- phase-change material --- dispersion --- thermal-mechanical stability --- viscosity --- supercooling --- nucleating agent --- cold storage --- battery cooling --- LPMO --- Fourier Transform ac Voltammetry (FTacV) --- cyclic voltammetry --- Direct Electron Transfer (DET) --- lathrate hydrate --- tetrabutylammonium acrylate (TBAAc) --- crystal growth --- ultrasonic vibration --- polyurethane elastomers --- microencapsulated PCMs --- thermal properties --- mechanical properties --- phase change material --- sugar alcohol --- erythritol --- latent heat storage --- thermal stability --- degradation kinetics --- PCM --- mini-channels --- air --- melting --- solidification --- latent heat thermal energy storage --- phase change materials (PCM) --- macro-encapsulation --- rectangular slab --- experimental study --- sodium nitrate --- thermal conductivity --- microencapsulation --- latent heat --- multicriteria decision --- finite element --- automotive --- energy storage
Listing 1 - 3 of 3 |
Sort by
|