Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Rainfall is the main input for all hydrological models, such as rainfall–runoff models and the forecasting of landslides triggered by precipitation, with its comprehension being clearly essential for effective water resource management as well. The need to improve the modeling of rainfall fields constitutes a key aspect both for efficiently realizing early warning systems and for carrying out analyses of future scenarios related to occurrences and magnitudes for all induced phenomena. The aim of this Special Issue was hence to provide a collection of innovative contributions for rainfall modeling, focusing on hydrological scales and a context of climate changes. We believe that the contribution from the latest research outcomes presented in this Special Issue can shed novel insights on the comprehension of the hydrological cycle and all the phenomena that are a direct consequence of rainfall. Moreover, all these proposed papers can clearly constitute a valid base of knowledge for improving specific key aspects of rainfall modeling, mainly concerning climate change and how it induces modifications in properties such as magnitude, frequency, duration, and the spatial extension of different types of rainfall fields. The goal should also consider providing useful tools to practitioners for quantifying important design metrics in transient hydrological contexts (quantiles of assigned frequency, hazard functions, intensity–duration–frequency curves, etc.).
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- IDF curves --- Return period --- Rainfall thresholds --- Temporal and spatial rainfall distribution --- Stochastic Rainfall Generators --- Bayesian framework --- Rainfall nowcasting --- Rainfall downscaling
Choose an application
Landslides are destructive processes causing casualties and damage worldwide. The majority of the landslides are triggered by intense and/or prolonged rainfall. Therefore, the prediction of the occurrence of rainfall-induced landslides is an important scientific and social issue. To mitigate the risk posed by rainfall-induced landslides, landslide early warning systems (LEWS) can be built and applied at different scales as effective non-structural mitigation measures. Usually, the core of a LEWS is constituted of a mathematical model that predicts landslide occurrence in the monitored areas. In recent decades, rainfall thresholds have become a widespread and well established technique for the prediction of rainfall-induced landslides, and for the setting up of prototype or operational LEWS. A rainfall threshold expresses, with a mathematic law, the rainfall amount that, when reached or exceeded, is likely to trigger one or more landslides. Rainfall thresholds can be defined with relatively few parameters and are very straightforward to operate, because their application within LEWS is usually based only on the comparison of monitored and/or forecasted rainfall. This Special Issue collects contributions on the recent research advances or well-documented applications of rainfall thresholds, as well as other innovative methods for landslide prediction and early warning. Contributions regarding the description of a LEWS or single components of LEWS (e.g., monitoring approaches, forecasting models, communication strategies, and emergency management) are also welcome.
loess landslide --- DAN-W --- numerical simulation --- dynamic analysis --- rainfall thresholds --- Bhutan --- shallow landslides --- landslides --- Idukki --- early warning system --- landslide hazard --- antecedent rainfall threshold --- landslide susceptibility --- satellite-derived rainfall --- TRMM Multisatellite Precipitation Analysis 3B42 (TMPA) --- tropical Africa --- rainfall --- thresholds --- physicallybased model --- hydrological monitoring --- soil water index --- large-scale landslide --- SWI–D threshold --- shallow landslide --- temporal probability --- landslide and debris flow --- China --- quantile regression --- Wayanad --- early warning --- GIS --- rainfall intensity --- optimization --- rainfall thresholds calculation --- mean annual rainfall --- lithology --- Slovenia --- n/a --- SWI-D threshold
Choose an application
Landslides are destructive processes causing casualties and damage worldwide. The majority of the landslides are triggered by intense and/or prolonged rainfall. Therefore, the prediction of the occurrence of rainfall-induced landslides is an important scientific and social issue. To mitigate the risk posed by rainfall-induced landslides, landslide early warning systems (LEWS) can be built and applied at different scales as effective non-structural mitigation measures. Usually, the core of a LEWS is constituted of a mathematical model that predicts landslide occurrence in the monitored areas. In recent decades, rainfall thresholds have become a widespread and well established technique for the prediction of rainfall-induced landslides, and for the setting up of prototype or operational LEWS. A rainfall threshold expresses, with a mathematic law, the rainfall amount that, when reached or exceeded, is likely to trigger one or more landslides. Rainfall thresholds can be defined with relatively few parameters and are very straightforward to operate, because their application within LEWS is usually based only on the comparison of monitored and/or forecasted rainfall. This Special Issue collects contributions on the recent research advances or well-documented applications of rainfall thresholds, as well as other innovative methods for landslide prediction and early warning. Contributions regarding the description of a LEWS or single components of LEWS (e.g., monitoring approaches, forecasting models, communication strategies, and emergency management) are also welcome.
Research & information: general --- loess landslide --- DAN-W --- numerical simulation --- dynamic analysis --- rainfall thresholds --- Bhutan --- shallow landslides --- landslides --- Idukki --- early warning system --- landslide hazard --- antecedent rainfall threshold --- landslide susceptibility --- satellite-derived rainfall --- TRMM Multisatellite Precipitation Analysis 3B42 (TMPA) --- tropical Africa --- rainfall --- thresholds --- physicallybased model --- hydrological monitoring --- soil water index --- large-scale landslide --- SWI-D threshold --- shallow landslide --- temporal probability --- landslide and debris flow --- China --- quantile regression --- Wayanad --- early warning --- GIS --- rainfall intensity --- optimization --- rainfall thresholds calculation --- mean annual rainfall --- lithology --- Slovenia
Listing 1 - 3 of 3 |
Sort by
|