Listing 1 - 10 of 25 | << page >> |
Sort by
|
Choose an application
Electrochemical capacitors are being increasingly introduced in energy storage devices, for example, in automobiles, renewable energies, and mobile terminals. This book includes five high-quality papers that can lead to technological developments in electrochemical capacitors. The first paper describes the effect of the milling degree of activated carbon particles used in the electrodes on the supercapacitive performance of an electric double-layer capacitor. The second, fourth, and fifth papers describe novel electrode materials that have the potential to enhance the performance of next-generation electrochemical capacitors. Nickel molybdate/reduced graphene oxide nanocomposite, copper-decorated carbon nanotubes, and nickel hydroxide/activated carbon composite are tested, and are shown to be promising candidates for next-generation electrochemical capacitors. The third paper reports the hybrid utilization of electrochemical capacitors with other types of energy devices (photovoltaics, fuel cells, and batteries) in a DC microgrid, which ensures wider applications of electrochemical capacitors in the near future. The knowledge and experience in this book are beneficial in manufacturing and utilizing electrochemical capacitors. Cutting-edge knowledge related to novel electrode nano-materials is also helpful to design next-generation electrochemical capacitors. This book delivers useful information to specialists involved in energy storage technologies.
History of engineering & technology --- CNT --- copper --- composite --- energy storage --- DC microgrid --- energy management --- hybrid power system --- energy efficiency --- nickel-cobalt hydroxide --- activated carbon --- hybrid capacitor prototype case study --- KOH aqueous electrolyte energy storage device --- coin-cell prototype --- electrochemical performance --- starch --- porous structure --- NiMoO4/3D-rGO nanocomposite --- NiMoO4 NPs --- ball milling --- electric double-layer capacitor --- supercapacitor --- electrode --- specific capacitance --- energy density --- power density
Choose an application
Electrochemical capacitors are being increasingly introduced in energy storage devices, for example, in automobiles, renewable energies, and mobile terminals. This book includes five high-quality papers that can lead to technological developments in electrochemical capacitors. The first paper describes the effect of the milling degree of activated carbon particles used in the electrodes on the supercapacitive performance of an electric double-layer capacitor. The second, fourth, and fifth papers describe novel electrode materials that have the potential to enhance the performance of next-generation electrochemical capacitors. Nickel molybdate/reduced graphene oxide nanocomposite, copper-decorated carbon nanotubes, and nickel hydroxide/activated carbon composite are tested, and are shown to be promising candidates for next-generation electrochemical capacitors. The third paper reports the hybrid utilization of electrochemical capacitors with other types of energy devices (photovoltaics, fuel cells, and batteries) in a DC microgrid, which ensures wider applications of electrochemical capacitors in the near future. The knowledge and experience in this book are beneficial in manufacturing and utilizing electrochemical capacitors. Cutting-edge knowledge related to novel electrode nano-materials is also helpful to design next-generation electrochemical capacitors. This book delivers useful information to specialists involved in energy storage technologies.
CNT --- copper --- composite --- energy storage --- DC microgrid --- energy management --- hybrid power system --- energy efficiency --- nickel-cobalt hydroxide --- activated carbon --- hybrid capacitor prototype case study --- KOH aqueous electrolyte energy storage device --- coin-cell prototype --- electrochemical performance --- starch --- porous structure --- NiMoO4/3D-rGO nanocomposite --- NiMoO4 NPs --- ball milling --- electric double-layer capacitor --- supercapacitor --- electrode --- specific capacitance --- energy density --- power density
Choose an application
Electrochemical capacitors are being increasingly introduced in energy storage devices, for example, in automobiles, renewable energies, and mobile terminals. This book includes five high-quality papers that can lead to technological developments in electrochemical capacitors. The first paper describes the effect of the milling degree of activated carbon particles used in the electrodes on the supercapacitive performance of an electric double-layer capacitor. The second, fourth, and fifth papers describe novel electrode materials that have the potential to enhance the performance of next-generation electrochemical capacitors. Nickel molybdate/reduced graphene oxide nanocomposite, copper-decorated carbon nanotubes, and nickel hydroxide/activated carbon composite are tested, and are shown to be promising candidates for next-generation electrochemical capacitors. The third paper reports the hybrid utilization of electrochemical capacitors with other types of energy devices (photovoltaics, fuel cells, and batteries) in a DC microgrid, which ensures wider applications of electrochemical capacitors in the near future. The knowledge and experience in this book are beneficial in manufacturing and utilizing electrochemical capacitors. Cutting-edge knowledge related to novel electrode nano-materials is also helpful to design next-generation electrochemical capacitors. This book delivers useful information to specialists involved in energy storage technologies.
History of engineering & technology --- CNT --- copper --- composite --- energy storage --- DC microgrid --- energy management --- hybrid power system --- energy efficiency --- nickel-cobalt hydroxide --- activated carbon --- hybrid capacitor prototype case study --- KOH aqueous electrolyte energy storage device --- coin-cell prototype --- electrochemical performance --- starch --- porous structure --- NiMoO4/3D-rGO nanocomposite --- NiMoO4 NPs --- ball milling --- electric double-layer capacitor --- supercapacitor --- electrode --- specific capacitance --- energy density --- power density --- CNT --- copper --- composite --- energy storage --- DC microgrid --- energy management --- hybrid power system --- energy efficiency --- nickel-cobalt hydroxide --- activated carbon --- hybrid capacitor prototype case study --- KOH aqueous electrolyte energy storage device --- coin-cell prototype --- electrochemical performance --- starch --- porous structure --- NiMoO4/3D-rGO nanocomposite --- NiMoO4 NPs --- ball milling --- electric double-layer capacitor --- supercapacitor --- electrode --- specific capacitance --- energy density --- power density
Choose an application
The book compiles scientific articles describing advances in nanomaterial synthesis and their application in water remediation. The publications treat diverse problems such as dye degradation, heavy metal ion, as well as radioactive element capture and sequestration. There are 10 original research articles and one review article. The latter proposes graphene/CNT and Prussian blue nanocomposites for radioactive 137-cesium extraction from aqueous media. All reports thoroughly characterize the nanomaterials post-synthesis and describe their catalytic, photocatalytic, or ion exchange activities in contaminated water. The dyes studied in the collection are azo dyes, i.e. methylene blue and orange, rhodamine B, phenolic dyes viz. bromophenol blue, and other dyes with sulfonyl groups. Extraction of radioactive elements, including cationic 137Cs+ and anionic 125I?, is also investigated. The omnipresence of ZnO nanoparticles in everyday products and their effects in wastewater are also evaluated. Layered double hydroxide are capable of capturing Ag ions, which then has a catalytic effect on dye degradation. The nanomaterials considered are varied, viz., graphene, CNT, Prussian blue, nanoporous carbon, layered double hydroxides, magnetite, ferrites, organic powders, polymer membranes, bacteria, and inorganic nanomaterials such as MnO and Ag. The book targets an interdisciplinary readership.
LDHs --- magnetic photocatalyst --- n/a --- bioremediation --- membrane --- BiOCl --- BiVO4 --- degradation --- agglomeration --- solvent vapor annealing --- nanoporous carbon --- nanocomposite --- Prussian blue --- stability --- silver nanomaterials --- adsorption --- wastewater --- desalination --- ZnO nanoparticles --- film --- magnetic performance --- metal-organic frameworks --- 137Cs+ selectivity --- nanomixtures --- water remediation --- photocatalytic activity --- adsorption properties --- magnetic extraction --- RGO --- structural regularity --- photocatalytic mechanism --- wastewater treatment --- 137-Cesium --- photocatalyst --- magnetic nanoparticles --- graphene --- radioactive iodine --- carbon nanotubes --- doping modification --- electrospinning --- radioactive contamination --- Mn–Zn ferrite --- mixed wastewater --- manganese oxide --- host–guest interaction --- bromophenol blue --- Dy3+ --- organic pollutants --- dye --- beta-cyclodextrin polymer --- polydopamine --- interaction --- dye removal --- adsorption models --- RhB photodegradation --- hydrothermal method --- supercapacitor --- Mn-Zn ferrite --- host-guest interaction
Choose an application
The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes.
Technology: general issues --- Chemical engineering --- ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles --- n/a
Choose an application
Advanced materials for energy and environmental applications (such as rapid heating, anti-fouling/anti-virus surface, chemical sensor, textile/stretchable sensor, fuel cell, and lithium-ion batteries) have been extensively investigated in the academic and industrial fields. The advent of cabon-based nano-materials (carbon nanotubes, graphene, and carbon black) and inonganic nano-materials (Ag wire/particles, Cu mesh, and transition metal dichalcogenide) has accelerated research interest in energy and environmental applications. This book is focused on the emerging concept and improvement of energy and environmental basic research, as well as in the characterization and analysis of novel energy and environmental base materials. The contents of the book are as below: - Theoretical and experimental studies on advanced conducting nanocomposites; - Electrical properties of nanocomposites under various conditions (dynamic mode, aspect ratio, alignment, and contents) and its applications; - Advanced material for energy applications; - Analysis and materials for environmental applications.
History of engineering & technology --- carbon nanotubes --- circumferential shearing --- alignment --- electrical conductivity --- carbon nanotube --- composite --- three-roll milling --- CNT dispersion --- filler length variation --- maize straw --- corn stover --- methane production --- biogas --- substrate --- direct methanol fuel cells --- sputter --- sandpaper --- roughness --- electrochemical impedance spectroscopy --- polarization --- lithium corrosion --- calibration-free laser-induced breakdown spectroscopy --- quantitative analysis --- depth profile analysis --- residual CaSO4 --- solid wastes --- high belite sulfoaluminate cement --- petroleum coke desulfurization slag --- CaSO4 type --- CaSO4 content --- cement properties --- biofouling --- iron bacteria --- nickel-phosphorus-reduced graphene oxide (Ni-P-rGO) --- induction period --- fouling resistance --- nano-composites --- Monte Carlo simulation --- percolation networks --- aspect ratio --- polymer composite --- strain sensor --- hysteresis --- aligned MWCNT --- piezo-resistive characteristics
Choose an application
Advanced materials for energy and environmental applications (such as rapid heating, anti-fouling/anti-virus surface, chemical sensor, textile/stretchable sensor, fuel cell, and lithium-ion batteries) have been extensively investigated in the academic and industrial fields. The advent of cabon-based nano-materials (carbon nanotubes, graphene, and carbon black) and inonganic nano-materials (Ag wire/particles, Cu mesh, and transition metal dichalcogenide) has accelerated research interest in energy and environmental applications. This book is focused on the emerging concept and improvement of energy and environmental basic research, as well as in the characterization and analysis of novel energy and environmental base materials. The contents of the book are as below: - Theoretical and experimental studies on advanced conducting nanocomposites; - Electrical properties of nanocomposites under various conditions (dynamic mode, aspect ratio, alignment, and contents) and its applications; - Advanced material for energy applications; - Analysis and materials for environmental applications.
carbon nanotubes --- circumferential shearing --- alignment --- electrical conductivity --- carbon nanotube --- composite --- three-roll milling --- CNT dispersion --- filler length variation --- maize straw --- corn stover --- methane production --- biogas --- substrate --- direct methanol fuel cells --- sputter --- sandpaper --- roughness --- electrochemical impedance spectroscopy --- polarization --- lithium corrosion --- calibration-free laser-induced breakdown spectroscopy --- quantitative analysis --- depth profile analysis --- residual CaSO4 --- solid wastes --- high belite sulfoaluminate cement --- petroleum coke desulfurization slag --- CaSO4 type --- CaSO4 content --- cement properties --- biofouling --- iron bacteria --- nickel-phosphorus-reduced graphene oxide (Ni-P-rGO) --- induction period --- fouling resistance --- nano-composites --- Monte Carlo simulation --- percolation networks --- aspect ratio --- polymer composite --- strain sensor --- hysteresis --- aligned MWCNT --- piezo-resistive characteristics
Choose an application
The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes.
ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles --- n/a
Choose an application
The increasingly stricter standards for effluent discharge and the decreasing availability of freshwater resources worldwide have made the development of advanced wastewater treatment technologies necessary. Advanced oxidation processes (AOPs) are becoming an attractive alternative and a complementary treatment option to conventional methods. AOPs are used to improve the biodegradability of wastewaters containing non-biodegradable organics. Besides, AOPs may inactivate pathogenic microorganisms without adding additional chemicals to the water during disinfection, avoiding the formation of hazardous by-products. This Special Issue of Processes aims to cover recent progress and novel trends in the field of AOPs, including UV/H2O2, O3, sulphate-radical oxidation, nanotechnology in AOPs, heterogeneous photocatalysis, sonolysis, Fenton, photo-Fenton, electrochemical oxidation, and related oxidation processes. The topics to be addressed in this Special Issue of Processes may also include the application of AOPs at various scales (laboratory, pilot, or industrial scale), the degradation of emerging contaminants in water and wastewater and pollutants in the gas phase, the quantification of toxicicy in residuals, the development of novel catalytic materials and of hybrid processes, including the combination of AOPs with other technologies, process intensification, and the use of photo-electrochemical processes for energy production.
History of engineering & technology --- polycyclic musks --- degradation mechanism --- UV/chlorine advanced oxidation process --- water treatment --- UV-LED --- photoreactors --- mining wastewater --- cyanide --- metal removal --- photocatalysis --- TiO2 nanotubes --- emerging contaminants --- paracetamol --- pH --- heating oxidation --- surface/interface properties --- floatability --- induction time --- bubble-particle wrap angle --- cow manure --- chemical activation process --- activated carbon --- pore property --- cationic pollutant --- adsorption performance --- nano zero-valent iron --- borohydride reduction method --- wastewater treatment --- iron nanopowders --- lead ions --- biological processes --- electrochemical processes --- oxidation processes --- petroleum --- phenols --- sulfides --- ethyl violet --- Mn-doped Fe/rGO nanocomposites --- mesoporous materials --- artificial intelligence --- gradient boosted regression trees --- total dissolved nitrogen --- digestion method --- digestion efficiency --- intensification --- ozone --- electrolyzed water --- foodborne pathogens --- sanitization --- advace oxitadion processes (AOP) --- electro-oxidation --- ferrate ion --- BBR dye --- polycyclic musks --- degradation mechanism --- UV/chlorine advanced oxidation process --- water treatment --- UV-LED --- photoreactors --- mining wastewater --- cyanide --- metal removal --- photocatalysis --- TiO2 nanotubes --- emerging contaminants --- paracetamol --- pH --- heating oxidation --- surface/interface properties --- floatability --- induction time --- bubble-particle wrap angle --- cow manure --- chemical activation process --- activated carbon --- pore property --- cationic pollutant --- adsorption performance --- nano zero-valent iron --- borohydride reduction method --- wastewater treatment --- iron nanopowders --- lead ions --- biological processes --- electrochemical processes --- oxidation processes --- petroleum --- phenols --- sulfides --- ethyl violet --- Mn-doped Fe/rGO nanocomposites --- mesoporous materials --- artificial intelligence --- gradient boosted regression trees --- total dissolved nitrogen --- digestion method --- digestion efficiency --- intensification --- ozone --- electrolyzed water --- foodborne pathogens --- sanitization --- advace oxitadion processes (AOP) --- electro-oxidation --- ferrate ion --- BBR dye
Choose an application
Recently, the development of polymeric materials for biomedical applications has advanced significantly. Polymeric materials are favored in the development of therapeutic devices, including temporary implants and three-dimensional scaffolds for tissue engineering and in vitro disease modelling.Further advancements have also occurred in the utilization of polymeric materials for pharmacological applications, such as delivery vehicles for drug release.We would like to invite you to contribute to this Special Issue. Research topics of interest include, but are not limited to, recent advances related to 3D cell culture, biomaterials, tissue engineering, disease modelling, hydrogel, organoids, drug discovery, bioimaging, cardio-renal, metabolic disease, and stem cell biology.
Medicine --- Pharmaceutical industries --- hydrogels --- crosslinking --- degradable --- gamma (γ)-irradiation --- sterilization --- sterility assurance --- antibacterial ability --- jojoba --- Simmondsia --- chemistry --- liquid wax --- biology --- toxicity --- pharmaceutical/industrial uses --- articular cartilage --- mechanical properties --- tribological properties --- antibacterial --- pathogens --- infectious diseases --- silver nanoparticles --- wound care --- wound dressings --- polymers --- gelatin --- nanofibers --- sponges --- Ag/RGO nanocomposites --- green preparation --- anticancer performance --- potential mechanism --- oxidative stress --- hydrogel --- poloxamer 407 polymer --- poloxamer 407 gel --- transungual drug delivery --- onychomycosis --- ungual penetration enhancer --- Terbinafine --- diafiltration --- SAXS --- aromatic interactions --- poly(sodium 4-styrenesulfonate) --- chlorpheniramine --- polyelectrolyte --- aggregation --- coaxial electrospinning --- extracellular matrix --- myelination --- oligodendrocyte --- water-soluble materials --- orthokeratology lens --- protein deposition --- optical characteristics --- rubbing --- chitosan --- kenaf --- nanocrystalline cellulose --- platelet lysate --- wound healing --- carbohydrate polymers blends --- functional food --- antioxidant activity --- co-microencapsulation --- spray drying --- bacteria viability (Bacillus clausii) --- probiotics --- itraconazole --- self-emulsifying nanovesicles --- transungual --- anti-fungal --- hydrogels --- crosslinking --- degradable --- gamma (γ)-irradiation --- sterilization --- sterility assurance --- antibacterial ability --- jojoba --- Simmondsia --- chemistry --- liquid wax --- biology --- toxicity --- pharmaceutical/industrial uses --- articular cartilage --- mechanical properties --- tribological properties --- antibacterial --- pathogens --- infectious diseases --- silver nanoparticles --- wound care --- wound dressings --- polymers --- gelatin --- nanofibers --- sponges --- Ag/RGO nanocomposites --- green preparation --- anticancer performance --- potential mechanism --- oxidative stress --- hydrogel --- poloxamer 407 polymer --- poloxamer 407 gel --- transungual drug delivery --- onychomycosis --- ungual penetration enhancer --- Terbinafine --- diafiltration --- SAXS --- aromatic interactions --- poly(sodium 4-styrenesulfonate) --- chlorpheniramine --- polyelectrolyte --- aggregation --- coaxial electrospinning --- extracellular matrix --- myelination --- oligodendrocyte --- water-soluble materials --- orthokeratology lens --- protein deposition --- optical characteristics --- rubbing --- chitosan --- kenaf --- nanocrystalline cellulose --- platelet lysate --- wound healing --- carbohydrate polymers blends --- functional food --- antioxidant activity --- co-microencapsulation --- spray drying --- bacteria viability (Bacillus clausii) --- probiotics --- itraconazole --- self-emulsifying nanovesicles --- transungual --- anti-fungal
Listing 1 - 10 of 25 | << page >> |
Sort by
|