Narrow your search

Library

KU Leuven (9)

VUB (8)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

VIVES (7)

ULiège (6)

UAntwerpen (3)

More...

Resource type

book (12)


Language

English (12)


Year
From To Submit

2022 (1)

2018 (1)

2014 (1)

2011 (1)

2008 (1)

More...
Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Recent developments in several complex variables
Author:
ISBN: 0691082855 0691082812 1400881544 Year: 1981 Publisher: Princeton (N.J.) : Princeton university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Recent Developments in Several Complex Variables. (AM-100), Volume 100, will be forthcoming.

Keywords

Complex analysis --- Functions of several complex variables. --- Complex variables --- Several complex variables, Functions of --- Functions of complex variables --- Analytic continuation. --- Analytic function. --- Analytic set. --- Analytic space. --- Asymptotic expansion. --- Automorphic function. --- Axiom. --- Base change. --- Bergman metric. --- Betti number. --- Big O notation. --- Bilinear form. --- Boundary value problem. --- CR manifold. --- Canonical bundle. --- Cauchy problem. --- Cauchy–Riemann equations. --- Characteristic variety. --- Codimension. --- Coefficient. --- Cohomology ring. --- Cohomology. --- Commutative property. --- Commutator. --- Compactification (mathematics). --- Complete intersection. --- Complete metric space. --- Complex dimension. --- Complex manifold. --- Complex number. --- Complex plane. --- Complex projective space. --- Complex space. --- Complex-analytic variety. --- Degeneracy (mathematics). --- Dense set. --- Determinant. --- Diffeomorphism. --- Differentiable function. --- Dimension (vector space). --- Dimension. --- Eigenvalues and eigenvectors. --- Embedding. --- Existential quantification. --- Explicit formulae (L-function). --- Fermat curve. --- Fiber bundle. --- Fundamental solution. --- Gorenstein ring. --- Hartogs' extension theorem. --- Hilbert space. --- Hilbert transform. --- Holomorphic function. --- Homotopy. --- Hyperfunction. --- Hypersurface. --- Hypoelliptic operator. --- Interpolation theorem. --- Irreducible component. --- Isometry. --- Linear map. --- Manifold. --- Maximal ideal. --- Monic polynomial. --- Monotonic function. --- Multiple integral. --- Nilpotent Lie algebra. --- Norm (mathematics). --- Open set. --- Orthogonal group. --- Parametrization. --- Permutation. --- Plurisubharmonic function. --- Polynomial. --- Principal bundle. --- Principal part. --- Principal value. --- Projection (linear algebra). --- Projective line. --- Proper map. --- Quadratic function. --- Real projective space. --- Resolution of singularities. --- Riemann surface. --- Riemannian manifold. --- Sectional curvature. --- Sheaf cohomology. --- Special case. --- Submanifold. --- Subset. --- Symplectic vector space. --- Tangent space. --- Theorem. --- Topology. --- Uniqueness theorem. --- Unit disk. --- Unit sphere. --- Variable (mathematics). --- Vector bundle. --- Vector field. --- Fonctions de variables complexes --- Colloque

Twisted L-functions and monodromy
Author:
ISBN: 1282820893 9786612820892 1400824885 069109151X 0691091501 9781400824885 9780691091501 9780691091518 9781282820890 6612820896 Year: 2002 Volume: 150 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves? Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the function field case (with a growing constant field). The monodromy-theoretic methods he develops turn out to apply, still in the function field case, equally well to families of big twists of objects of all sorts, not just to elliptic curves. The leisurely, lucid introduction gives the reader a clear picture of what is known and what is unknown at present, and situates the problems solved in this book within the broader context of the overall study of elliptic curves. The book's technical core makes use of, and explains, various advanced topics ranging from recent results in finite group theory to the machinery of l-adic cohomology and monodromy. Twisted L-Functions and Monodromy is essential reading for anyone interested in number theory and algebraic geometry.

Keywords

L-functions. --- Monodromy groups. --- Functions, L --- -L-functions. --- Group theory --- -Number theory --- L-functions --- Monodromy groups --- Abelian variety. --- Absolute continuity. --- Addition. --- Affine space. --- Algebraically closed field. --- Ambient space. --- Average. --- Betti number. --- Birch and Swinnerton-Dyer conjecture. --- Blowing up. --- Codimension. --- Coefficient. --- Computation. --- Conjecture. --- Conjugacy class. --- Convolution. --- Critical value. --- Differential geometry of surfaces. --- Dimension (vector space). --- Dimension. --- Direct sum. --- Divisor (algebraic geometry). --- Divisor. --- Eigenvalues and eigenvectors. --- Elliptic curve. --- Equation. --- Equidistribution theorem. --- Existential quantification. --- Factorization. --- Finite field. --- Finite group. --- Finite set. --- Flat map. --- Fourier transform. --- Function field. --- Functional equation. --- Goursat's lemma. --- Ground field. --- Group representation. --- Hyperplane. --- Hypersurface. --- Integer matrix. --- Integer. --- Irreducible component. --- Irreducible polynomial. --- Irreducible representation. --- J-invariant. --- K3 surface. --- L-function. --- Lebesgue measure. --- Lefschetz pencil. --- Level of measurement. --- Lie algebra. --- Limit superior and limit inferior. --- Minimal polynomial (field theory). --- Modular form. --- Monodromy. --- Morphism. --- Numerical analysis. --- Orthogonal group. --- Percentage. --- Polynomial. --- Prime number. --- Probability measure. --- Quadratic function. --- Quantity. --- Quotient space (topology). --- Representation theory. --- Residue field. --- Riemann hypothesis. --- Root of unity. --- Scalar (physics). --- Set (mathematics). --- Sheaf (mathematics). --- Subgroup. --- Summation. --- Symmetric group. --- System of imprimitivity. --- Theorem. --- Trivial representation. --- Zariski topology.


Book
Lectures on pseudo-differential operators: regularity theorems and applications to non-elliptic problems
Authors: ---
ISBN: 0691082472 0691601097 1400870488 0691630852 Year: 1979 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

The theory of pseudo-differential operators (which originated as singular integral operators) was largely influenced by its application to function theory in one complex variable and regularity properties of solutions of elliptic partial differential equations. Given here is an exposition of some new classes of pseudo-differential operators relevant to several complex variables and certain non-elliptic problems.Originally published in 1979.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

517.982.4 --- Pseudodifferential operators --- Operators, Pseudodifferential --- Pseudo-differential operators --- Theory of generalized functions (distributions) --- Pseudodifferential operators. --- 517.982.4 Theory of generalized functions (distributions) --- Operator theory --- Differential equations, Partial --- Équations aux dérivées partielles --- Opérateurs pseudo-différentiels --- Addition. --- Adjoint. --- Approximation. --- Asymptotic expansion. --- Banach space. --- Bounded operator. --- Boundedness. --- Calculation. --- Change of variables. --- Coefficient. --- Compact space. --- Complex analysis. --- Computation. --- Corollary. --- Cotangent bundle. --- Derivative. --- Differential operator. --- Disjoint union. --- Elliptic partial differential equation. --- Estimation. --- Euclidean distance. --- Euclidean vector. --- Existential quantification. --- Fourier integral operator. --- Fourier transform. --- Geometric series. --- Heat equation. --- Heisenberg group. --- Homogeneous distribution. --- Infimum and supremum. --- Integer. --- Integration by parts. --- Intermediate value theorem. --- Jacobian matrix and determinant. --- Left inverse. --- Linear combination. --- Linear map. --- Mean value theorem. --- Monograph. --- Monomial. --- Nilpotent group. --- Operator (physics). --- Operator norm. --- Order of magnitude. --- Orthogonal complement. --- Parametrix. --- Parity (mathematics). --- Partition of unity. --- Polynomial. --- Projection (linear algebra). --- Pseudo-differential operator. --- Quadratic function. --- Regularity theorem. --- Remainder. --- Requirement. --- Right inverse. --- Scientific notation. --- Self-reference. --- Several complex variables. --- Singular integral. --- Smoothness. --- Sobolev space. --- Special case. --- Submanifold. --- Subset. --- Sum of squares. --- Summation. --- Support (mathematics). --- Tangent space. --- Taylor's theorem. --- Theorem. --- Theory. --- Transpose. --- Triangle inequality. --- Uniform boundedness. --- Upper and lower bounds. --- Variable (mathematics). --- Without loss of generality. --- Zero set. --- Équations aux dérivées partielles --- Opérateurs pseudo-différentiels

Dynamics in one complex variable
Author:
ISBN: 9780691124889 9780691124872 0691124884 0691124876 9786613001481 1400835534 1283001489 9781400835539 9781283001489 6613001481 Year: 2006 Publisher: Princeton, N.J. : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. This third edition contains a number of minor additions and improvements: A historical survey has been added, the definition of Lattés map has been made more inclusive, and the écalle-Voronin theory of parabolic points is described. The résidu itératif is studied, and the material on two complex variables has been expanded. Recent results on effective computability have been added, and the references have been expanded and updated. Written in his usual brilliant style, the author makes difficult mathematics look easy. This book is a very accessible source for much of what has been accomplished in the field.

Keywords

Functions of complex variables --- Holomorphic mappings --- Riemann surfaces --- Fonctions d'une variable complexe --- Applications holomorphes --- Riemann, surfaces de --- Holomorphic mappings. --- Mappings, Holomorphic --- Functions of complex variables. --- Riemann surfaces. --- Surfaces, Riemann --- Functions --- Functions of several complex variables --- Mappings (Mathematics) --- Complex variables --- Elliptic functions --- Functions of real variables --- Absolute value. --- Addition. --- Algebraic equation. --- Attractor. --- Automorphism. --- Beltrami equation. --- Blaschke product. --- Boundary (topology). --- Branched covering. --- Coefficient. --- Compact Riemann surface. --- Compact space. --- Complex analysis. --- Complex number. --- Complex plane. --- Computation. --- Connected component (graph theory). --- Connected space. --- Constant function. --- Continued fraction. --- Continuous function. --- Coordinate system. --- Corollary. --- Covering space. --- Cross-ratio. --- Derivative. --- Diagram (category theory). --- Diameter. --- Diffeomorphism. --- Differentiable manifold. --- Disjoint sets. --- Disjoint union. --- Disk (mathematics). --- Division by zero. --- Equation. --- Euler characteristic. --- Existential quantification. --- Exponential map (Lie theory). --- Fundamental group. --- Harmonic function. --- Holomorphic function. --- Homeomorphism. --- Hyperbolic geometry. --- Inequality (mathematics). --- Integer. --- Inverse function. --- Irrational rotation. --- Iteration. --- Jordan curve theorem. --- Julia set. --- Lebesgue measure. --- Lecture. --- Limit point. --- Line segment. --- Linear map. --- Linearization. --- Mandelbrot set. --- Mathematical analysis. --- Maximum modulus principle. --- Metric space. --- Monotonic function. --- Montel's theorem. --- Normal family. --- Open set. --- Orbifold. --- Parameter space. --- Parameter. --- Periodic point. --- Point at infinity. --- Polynomial. --- Power series. --- Proper map. --- Quadratic function. --- Rational approximation. --- Rational function. --- Rational number. --- Real number. --- Riemann sphere. --- Riemann surface. --- Root of unity. --- Rotation number. --- Schwarz lemma. --- Scientific notation. --- Sequence. --- Simply connected space. --- Special case. --- Subgroup. --- Subsequence. --- Subset. --- Summation. --- Tangent space. --- Theorem. --- Topological space. --- Topology. --- Uniform convergence. --- Uniformization theorem. --- Unit circle. --- Unit disk. --- Upper half-plane. --- Winding number.


Book
Modern anti-windup synthesis : control augmentation for actuator saturation
Authors: ---
ISBN: 1283129280 9786613129284 1400839025 9781400839025 9780691147321 0691147329 Year: 2011 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"This book contains a collection of modern anti-windup algorithms. It is aimed at practicing control engineers as well as graduate students. The reader will learn the objectives and terminology of the anti-windup problem, will be exposed to the mathematics behind anti-windup synthesis, and will gain exposure to a variety of anti-windup algorithms, which are illustrated through examples"--

Keywords

Automatic control --- Linear control systems. --- Actuators. --- Mathematical models. --- Euler-Lagrange system. --- F8 aircraft. --- MIMO. --- SISO. --- algebraic loop. --- anti-windup algorithm. --- anti-windup augmentation. --- anti-windup compensator. --- anti-windup construction. --- anti-windup design. --- anti-windup filter. --- anti-windup synthesis. --- anti-windup. --- bumpless authority transfer. --- closed loop. --- compensation. --- constrained closed loop. --- controller. --- damped mass-spring. --- dead-time plant. --- direct control design. --- direct linear anti-windup. --- dynamic direct linear anti-windup. --- exponentially stable plant. --- exponentially unstable plant. --- external stability. --- feedback algorithm. --- feedback loop. --- feedback signal. --- global performance. --- global stability. --- hardware redundancy. --- input saturation. --- input. --- inputЯutput stability. --- internal stability. --- internal state. --- linear controller. --- linear injection. --- linear matrix inequalities. --- linear model recovery anti-windup. --- linear system. --- measurement governor. --- model predictive control. --- model recovery anti-windup. --- multicontroller scheme. --- nested saturation. --- non-exponentially unstable plant. --- nonlinear gain. --- nonlinear injection. --- nonlinear plant. --- nonlinear synthesis technique. --- nonlinear system. --- numerical algorithm. --- quadratic function. --- rank-deficient matrices. --- reduced-order compensator. --- reference governor. --- regional stability. --- reliable control. --- saturated closed loop. --- saturated closed-loop system. --- saturation nonlinearity. --- saturation. --- scheduling. --- servo-positioning system. --- small signal preservation. --- stability. --- stabilizer. --- state-space approach. --- stateгpace representation. --- static linear anti-windup. --- switching. --- unconstrained closed loop. --- unconstrained closed-loop system. --- unconstrained controller. --- unconstrained feedback system. --- unconstrained plant. --- unconstrained response recovery. --- unconstrained response. --- windup.

The Real Fatou Conjecture. (AM-144), Volume 144
Authors: ---
ISBN: 0691002576 1400865182 9781400865185 9780691002583 9780691002576 0691002584 9780691002583 Year: 2014 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students.

Keywords

Geodesics (Mathematics) --- Polynomials. --- Mappings (Mathematics) --- Maps (Mathematics) --- Functions --- Functions, Continuous --- Topology --- Transformations (Mathematics) --- Algebra --- Geometry, Differential --- Global analysis (Mathematics) --- Mathematics --- Absolute value. --- Affine transformation. --- Algebraic function. --- Analytic continuation. --- Analytic function. --- Arithmetic. --- Automorphism. --- Big O notation. --- Bounded set (topological vector space). --- C0. --- Calculation. --- Canonical map. --- Change of variables. --- Chebyshev polynomials. --- Combinatorics. --- Commutative property. --- Complex number. --- Complex plane. --- Complex quadratic polynomial. --- Conformal map. --- Conjecture. --- Conjugacy class. --- Conjugate points. --- Connected component (graph theory). --- Connected space. --- Continuous function. --- Corollary. --- Covering space. --- Critical point (mathematics). --- Dense set. --- Derivative. --- Diffeomorphism. --- Dimension. --- Disjoint sets. --- Disjoint union. --- Disk (mathematics). --- Equicontinuity. --- Estimation. --- Existential quantification. --- Fibonacci. --- Functional equation. --- Fundamental domain. --- Generalization. --- Great-circle distance. --- Hausdorff distance. --- Holomorphic function. --- Homeomorphism. --- Homotopy. --- Hyperbolic function. --- Imaginary number. --- Implicit function theorem. --- Injective function. --- Integer. --- Intermediate value theorem. --- Interval (mathematics). --- Inverse function. --- Irreducible polynomial. --- Iteration. --- Jordan curve theorem. --- Julia set. --- Limit of a sequence. --- Linear map. --- Local diffeomorphism. --- Mathematical induction. --- Mathematical proof. --- Maxima and minima. --- Meromorphic function. --- Moduli (physics). --- Monomial. --- Monotonic function. --- Natural number. --- Neighbourhood (mathematics). --- Open set. --- Parameter. --- Periodic function. --- Periodic point. --- Phase space. --- Point at infinity. --- Polynomial. --- Projection (mathematics). --- Quadratic function. --- Quadratic. --- Quasiconformal mapping. --- Renormalization. --- Riemann sphere. --- Riemann surface. --- Schwarzian derivative. --- Scientific notation. --- Subsequence. --- Theorem. --- Theory. --- Topological conjugacy. --- Topological entropy. --- Topology. --- Union (set theory). --- Unit circle. --- Unit disk. --- Upper and lower bounds. --- Upper half-plane. --- Z0.


Book
The Mathematics of Shock Reflection-Diffraction and von Neumann's Conjectures
Authors: ---
ISBN: 1400885434 Year: 2018 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book offers a survey of recent developments in the analysis of shock reflection-diffraction, a detailed presentation of original mathematical proofs of von Neumann's conjectures for potential flow, and a collection of related results and new techniques in the analysis of partial differential equations (PDEs), as well as a set of fundamental open problems for further development.Shock waves are fundamental in nature. They are governed by the Euler equations or their variants, generally in the form of nonlinear conservation laws-PDEs of divergence form. When a shock hits an obstacle, shock reflection-diffraction configurations take shape. To understand the fundamental issues involved, such as the structure and transition criteria of different configuration patterns, it is essential to establish the global existence, regularity, and structural stability of shock reflection-diffraction solutions. This involves dealing with several core difficulties in the analysis of nonlinear PDEs-mixed type, free boundaries, and corner singularities-that also arise in fundamental problems in diverse areas such as continuum mechanics, differential geometry, mathematical physics, and materials science. Presenting recently developed approaches and techniques, which will be useful for solving problems with similar difficulties, this book opens up new research opportunities.

Keywords

Shock waves --- Von Neumann algebras. --- MATHEMATICS / Differential Equations / Partial. --- Algebras, Von Neumann --- Algebras, W --- Neumann algebras --- Rings of operators --- W*-algebras --- C*-algebras --- Hilbert space --- Shock (Mechanics) --- Waves --- Diffraction --- Diffraction. --- Mathematics. --- A priori estimate. --- Accuracy and precision. --- Algorithm. --- Andrew Majda. --- Attractor. --- Banach space. --- Bernhard Riemann. --- Big O notation. --- Boundary value problem. --- Bounded set (topological vector space). --- C0. --- Calculation. --- Cauchy problem. --- Coefficient. --- Computation. --- Computational fluid dynamics. --- Conjecture. --- Conservation law. --- Continuum mechanics. --- Convex function. --- Degeneracy (mathematics). --- Demetrios Christodoulou. --- Derivative. --- Dimension. --- Directional derivative. --- Dirichlet boundary condition. --- Dirichlet problem. --- Dissipation. --- Ellipse. --- Elliptic curve. --- Elliptic partial differential equation. --- Embedding problem. --- Equation solving. --- Equation. --- Estimation. --- Euler equations (fluid dynamics). --- Existential quantification. --- Fixed point (mathematics). --- Flow network. --- Fluid dynamics. --- Fluid mechanics. --- Free boundary problem. --- Function (mathematics). --- Function space. --- Fundamental class. --- Fundamental solution. --- Fundamental theorem. --- Hyperbolic partial differential equation. --- Initial value problem. --- Iteration. --- Laplace's equation. --- Linear equation. --- Linear programming. --- Linear space (geometry). --- Mach reflection. --- Mathematical analysis. --- Mathematical optimization. --- Mathematical physics. --- Mathematical problem. --- Mathematical proof. --- Mathematical theory. --- Mathematician. --- Melting. --- Monotonic function. --- Neumann boundary condition. --- Nonlinear system. --- Numerical analysis. --- Parameter space. --- Parameter. --- Partial derivative. --- Partial differential equation. --- Phase boundary. --- Phase transition. --- Potential flow. --- Pressure gradient. --- Quadratic function. --- Regularity theorem. --- Riemann problem. --- Scientific notation. --- Self-similarity. --- Special case. --- Specular reflection. --- Stefan problem. --- Structural stability. --- Subspace topology. --- Symmetrization. --- Theorem. --- Theory. --- Truncation error (numerical integration). --- Two-dimensional space. --- Unification (computer science). --- Variable (mathematics). --- Velocity potential. --- Vortex sheet. --- Vorticity. --- Wave equation. --- Weak convergence (Hilbert space). --- Weak solution.


Book
The Mathematical Mechanic : Using Physical Reasoning to Solve Problems
Author:
ISBN: 0691244170 Year: 2022 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Everybody knows that mathematics is indispensable to physics--imagine where we'd be today if Einstein and Newton didn't have the math to back up their ideas. But how many people realize that physics can be used to produce many astonishing and strikingly elegant solutions in mathematics? Mark Levi shows how in this delightful book, treating readers to a host of entertaining problems and mind-bending puzzlers that will amuse and inspire their inner physicist.Levi turns math and physics upside down, revealing how physics can simplify proofs and lead to quicker solutions and new theorems, and how physical solutions can illustrate why results are true in ways lengthy mathematical calculations never can. Did you know it's possible to derive the Pythagorean theorem by spinning a fish tank filled with water? Or that soap film holds the key to determining the cheapest container for a given volume? Or that the line of best fit for a data set can be found using a mechanical contraption made from a rod and springs? Levi demonstrates how to use physical intuition to solve these and other fascinating math problems. More than half the problems can be tackled by anyone with precalculus and basic geometry, while the more challenging problems require some calculus. This one-of-a-kind book explains physics and math concepts where needed, and includes an informative appendix of physical principles.The Mathematical Mechanic will appeal to anyone interested in the little-known connections between mathematics and physics and how both endeavors relate to the world around us.

Keywords

Mathematical physics. --- Problem solving. --- MATHEMATICS / General. --- Methodology --- Psychology --- Decision making --- Executive functions (Neuropsychology) --- Physical mathematics --- Physics --- Mathematics --- Addition. --- Analytic function. --- Angular acceleration. --- Angular velocity. --- Axle. --- Calculation. --- Capacitor. --- Cartesian coordinate system. --- Cauchy's integral formula. --- Center of mass (relativistic). --- Center of mass. --- Centroid. --- Ceva's theorem. --- Clockwise. --- Complex analysis. --- Complex number. --- Conservation of energy. --- Convex curve. --- Curvature. --- Curve. --- Cylinder (geometry). --- Derivative. --- Diameter. --- Differential geometry. --- Dimension. --- Division by zero. --- Dot product. --- Eigenvalues and eigenvectors. --- Electric current. --- Equation. --- Euler's formula. --- Euler–Lagrange equation. --- Fermat's principle. --- Friction. --- Fundamental theorem of calculus. --- Gaussian curvature. --- Generating function. --- Geodesic curvature. --- Geometry. --- Gravity. --- Green's theorem. --- Heat flux. --- Hinge. --- Hooke's law. --- Horizontal plane. --- Hypotenuse. --- Inductance. --- Instant. --- Kinetic energy. --- Line integral. --- Linear map. --- Mathematics. --- Mechanics. --- Moment of inertia. --- Newton's laws of motion. --- Normal (geometry). --- Ohm's law. --- Optics. --- Partial derivative. --- Potential energy. --- Proportionality (mathematics). --- Pythagorean theorem. --- Quadratic function. --- Quantity. --- Rectangle. --- Resistor. --- Right angle. --- Right triangle. --- Second law of thermodynamics. --- Semicircle. --- Series and parallel circuits. --- Sign (mathematics). --- Slinky. --- Snell's law. --- Soap bubble. --- Soap film. --- Special case. --- Spring (device). --- Stiffness. --- Summation. --- Surface area. --- Surface tension. --- Tangent space. --- Tangent. --- Telescope. --- Theorem. --- Thought experiment. --- Tractrix. --- Trapezoid. --- Trigonometric functions. --- Two-dimensional gas. --- Uncertainty principle. --- Unit circle. --- Unit vector. --- Vacuum. --- Variable (mathematics). --- Vector field. --- Voltage drop. --- Voltage. --- Wavefront.

Renormalization and 3-manifolds which fiber over the circle
Author:
ISBN: 0691011540 1400865174 9781400865178 9780691011530 0691011532 9780691011547 Year: 1996 Volume: 142 Publisher: Princeton (N.J.): Princeton university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quantitative proof of convergence of renormalization.

Keywords

Differential dynamical systems --- Drie-menigvuldigheden (Topologie) --- Three-manifolds (Topology) --- Trois-variétés (Topologie) --- Differentiable dynamical systems. --- Dynamical systems, Differentiable --- Dynamics, Differentiable --- 3-manifolds (Topology) --- Manifolds, Three dimensional (Topology) --- Three-dimensional manifolds (Topology) --- Differential equations --- Global analysis (Mathematics) --- Topological dynamics --- Low-dimensional topology --- Topological manifolds --- Algebraic topology. --- Analytic continuation. --- Automorphism. --- Beltrami equation. --- Bifurcation theory. --- Boundary (topology). --- Cantor set. --- Circular symmetry. --- Combinatorics. --- Compact space. --- Complex conjugate. --- Complex manifold. --- Complex number. --- Complex plane. --- Conformal geometry. --- Conformal map. --- Conjugacy class. --- Convex hull. --- Covering space. --- Deformation theory. --- Degeneracy (mathematics). --- Dimension (vector space). --- Disk (mathematics). --- Dynamical system. --- Eigenvalues and eigenvectors. --- Factorization. --- Fiber bundle. --- Fuchsian group. --- Fundamental domain. --- Fundamental group. --- Fundamental solution. --- G-module. --- Geodesic. --- Geometry. --- Harmonic analysis. --- Hausdorff dimension. --- Homeomorphism. --- Homotopy. --- Hyperbolic 3-manifold. --- Hyperbolic geometry. --- Hyperbolic manifold. --- Hyperbolic space. --- Hypersurface. --- Infimum and supremum. --- Injective function. --- Intersection (set theory). --- Invariant subspace. --- Isometry. --- Julia set. --- Kleinian group. --- Laplace's equation. --- Lebesgue measure. --- Lie algebra. --- Limit point. --- Limit set. --- Linear map. --- Mandelbrot set. --- Manifold. --- Mapping class group. --- Measure (mathematics). --- Moduli (physics). --- Moduli space. --- Modulus of continuity. --- Möbius transformation. --- N-sphere. --- Newton's method. --- Permutation. --- Point at infinity. --- Polynomial. --- Quadratic function. --- Quasi-isometry. --- Quasiconformal mapping. --- Quasisymmetric function. --- Quotient space (topology). --- Radon–Nikodym theorem. --- Renormalization. --- Representation of a Lie group. --- Representation theory. --- Riemann sphere. --- Riemann surface. --- Riemannian manifold. --- Schwarz lemma. --- Simply connected space. --- Special case. --- Submanifold. --- Subsequence. --- Support (mathematics). --- Tangent space. --- Teichmüller space. --- Theorem. --- Topology of uniform convergence. --- Topology. --- Trace (linear algebra). --- Transversal (geometry). --- Transversality (mathematics). --- Triangle inequality. --- Unit disk. --- Unit sphere. --- Upper and lower bounds. --- Vector field. --- Differentiable dynamical systems --- 515.16 --- 515.16 Topology of manifolds --- Topology of manifolds

Self-Regularity : A New Paradigm for Primal-Dual Interior-Point Algorithms
Authors: --- ---
ISBN: 1282087606 9786612087608 140082513X 9781400825134 1400814529 9781400814527 9780691091938 0691091935 9780691091921 0691091927 0691091927 Year: 2003 Publisher: Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Research on interior-point methods (IPMs) has dominated the field of mathematical programming for the last two decades. Two contrasting approaches in the analysis and implementation of IPMs are the so-called small-update and large-update methods, although, until now, there has been a notorious gap between the theory and practical performance of these two strategies. This book comes close to bridging that gap, presenting a new framework for the theory of primal-dual IPMs based on the notion of the self-regularity of a function.The authors deal with linear optimization, nonlinear complementarity problems, semidefinite optimization, and second-order conic optimization problems. The framework also covers large classes of linear complementarity problems and convex optimization. The algorithm considered can be interpreted as a path-following method or a potential reduction method. Starting from a primal-dual strictly feasible point, the algorithm chooses a search direction defined by some Newton-type system derived from the self-regular proximity. The iterate is then updated, with the iterates staying in a certain neighborhood of the central path until an approximate solution to the problem is found. By extensively exploring some intriguing properties of self-regular functions, the authors establish that the complexity of large-update IPMs can come arbitrarily close to the best known iteration bounds of IPMs.Researchers and postgraduate students in all areas of linear and nonlinear optimization will find this book an important and invaluable aid to their work.

Keywords

Interior-point methods. --- Mathematical optimization. --- Programming (Mathematics). --- Mathematical optimization --- Interior-point methods --- Programming (Mathematics) --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Operations Research --- Mathematical programming --- Goal programming --- Algorithms --- Functional equations --- Operations research --- Optimization (Mathematics) --- Optimization techniques --- Optimization theory --- Systems optimization --- Mathematical analysis --- Maxima and minima --- Simulation methods --- System analysis --- 519.85 --- 681.3*G16 --- 681.3*G16 Optimization: constrained optimization; gradient methods; integer programming; least squares methods; linear programming; nonlinear programming (Numericalanalysis) --- Optimization: constrained optimization; gradient methods; integer programming; least squares methods; linear programming; nonlinear programming (Numericalanalysis) --- 519.85 Mathematical programming --- Accuracy and precision. --- Algorithm. --- Analysis of algorithms. --- Analytic function. --- Associative property. --- Barrier function. --- Binary number. --- Block matrix. --- Combination. --- Combinatorial optimization. --- Combinatorics. --- Complexity. --- Conic optimization. --- Continuous optimization. --- Control theory. --- Convex optimization. --- Delft University of Technology. --- Derivative. --- Differentiable function. --- Directional derivative. --- Division by zero. --- Dual space. --- Duality (mathematics). --- Duality gap. --- Eigenvalues and eigenvectors. --- Embedding. --- Equation. --- Estimation. --- Existential quantification. --- Explanation. --- Feasible region. --- Filter design. --- Function (mathematics). --- Implementation. --- Instance (computer science). --- Invertible matrix. --- Iteration. --- Jacobian matrix and determinant. --- Jordan algebra. --- Karmarkar's algorithm. --- Karush–Kuhn–Tucker conditions. --- Line search. --- Linear complementarity problem. --- Linear function. --- Linear programming. --- Lipschitz continuity. --- Local convergence. --- Loss function. --- Mathematician. --- Mathematics. --- Matrix function. --- McMaster University. --- Monograph. --- Multiplication operator. --- Newton's method. --- Nonlinear programming. --- Nonlinear system. --- Notation. --- Operations research. --- Optimal control. --- Optimization problem. --- Parameter (computer programming). --- Parameter. --- Pattern recognition. --- Polyhedron. --- Polynomial. --- Positive semidefinite. --- Positive-definite matrix. --- Quadratic function. --- Requirement. --- Result. --- Scientific notation. --- Second derivative. --- Self-concordant function. --- Sensitivity analysis. --- Sign (mathematics). --- Signal processing. --- Simplex algorithm. --- Simultaneous equations. --- Singular value. --- Smoothness. --- Solution set. --- Solver. --- Special case. --- Subset. --- Suggestion. --- Technical report. --- Theorem. --- Theory. --- Time complexity. --- Two-dimensional space. --- Upper and lower bounds. --- Variable (computer science). --- Variable (mathematics). --- Variational inequality. --- Variational principle. --- Without loss of generality. --- Worst-case complexity. --- Yurii Nesterov. --- Mathematical Optimization --- Mathematics --- Programming (mathematics)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by