Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Given the increasing importance of a globally interconnected world, driven by modern digital services and the need for fast and reliable access to digital resources, communication networks are one of the key infrastructures in today’s society. In this scenario, fiber optics and optical devices play a leading role, as they allow for unprecedented growth in our capacity to cope with the ever-increasing traffic demand. Optical transmission solutions range from high-speed networks based on coherent detection and advanced modulation formats for long-haul-level communications, to networks still relying on traditional intensity modulation and direct detection receivers for short-reach communications, down to intra-data center scenarios. In between there is a whole gamut of network architectures, providing different solutions for specific applications, targeting the minimization of cost-per-bit as a trade-off between capacity and overall implementation cost, in order for operators to cope with the increasing traffic demand while still providing reasonable market accessibility. Currently, most communications rely on optical technologies, and the worldwide goal is the optimum trade-off between transmission speed and cost-per-bit. This is usually pursued by i) manufacturing low-cost devices, ii) the introduction of digital solutions to overcome the physical limitations of optical communications systems and iii) the optimization of network design. Contributions to this Special Issue address these three subjects, and provide valuable insights into the optical fiber communications world.
Technology: general issues --- History of engineering & technology --- optical interconnects --- on–off keying --- pulse amplitude modulation --- misorientation --- optical communication --- InGaAs/GaAsP quantum well --- optical properties --- localization potential --- digital predistortion --- magnitude selective affine --- radio over fiber --- neural network --- error vector magnitude --- adjacent channel power ratio --- PON --- C-band --- chromatic dispersion compensation --- direct detection --- 200 Gbps per wavelength --- translucent optical networks --- regenerator placement --- dynamic traffic --- heuristics --- network design --- sparse regeneration --- 3R --- regenerator --- n/a --- on-off keying
Choose an application
Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC.
Technology: general issues --- History of engineering & technology --- visible light communication (VLC) --- dimming control --- constant transmission efficiency --- error performance --- light-emitting diode (LED) --- visible light communications --- deep learning --- bit error rate --- orthogonal frequency division multiplexing --- index modulation --- POF --- FSO --- LiFi --- LED --- orthogonal frequency division multiplexing (OFDM) --- power efficiency --- peak-to-average-power ratio (PAPR) --- pre-distorted enhanced --- underwater optical wireless communication (UOWC) --- ADO-OFDM --- gamma–gamma function --- full-duplex --- long-reach --- photon counting --- vehicular visible light communication (VVLC) --- intelligent reflecting surface (IRS) --- the number of mirrors --- energy efficiency (EE) --- carrierless amplitude and phase (CAP) modulation --- pairwise coding (PWC) --- dual-mode index modulation (DM) --- chaotic encryption --- visible light positioning (VLP) --- free-space communication --- RGB LED --- non-orthogonal multiple access (NOMA) --- superposition constellation adjustment --- successive interference cancellation --- bit error ratio --- NOMA triangle --- underwater wireless optical communication --- temporal dispersion --- bandwidth limitation --- Monte Carlo method --- maximum likelihood sequence estimation --- visible light communication --- nonlinear equalization --- reservoir computing --- neural network (NN) --- autoencoder (AE) --- transceiver design --- nonlinearity --- VLC --- predistortion --- coefficient approximation --- BLSTM --- orthogonal frequency-division multiplexing --- sampling frequency offset --- visible light communications (VLC) --- mmWave communications --- channel modeling --- channel propagation characteristics --- path loss --- delay spread (DS) --- Ricean K-factor --- cluster characteristics --- n/a --- gamma-gamma function
Choose an application
Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC.
visible light communication (VLC) --- dimming control --- constant transmission efficiency --- error performance --- light-emitting diode (LED) --- visible light communications --- deep learning --- bit error rate --- orthogonal frequency division multiplexing --- index modulation --- POF --- FSO --- LiFi --- LED --- orthogonal frequency division multiplexing (OFDM) --- power efficiency --- peak-to-average-power ratio (PAPR) --- pre-distorted enhanced --- underwater optical wireless communication (UOWC) --- ADO-OFDM --- gamma–gamma function --- full-duplex --- long-reach --- photon counting --- vehicular visible light communication (VVLC) --- intelligent reflecting surface (IRS) --- the number of mirrors --- energy efficiency (EE) --- carrierless amplitude and phase (CAP) modulation --- pairwise coding (PWC) --- dual-mode index modulation (DM) --- chaotic encryption --- visible light positioning (VLP) --- free-space communication --- RGB LED --- non-orthogonal multiple access (NOMA) --- superposition constellation adjustment --- successive interference cancellation --- bit error ratio --- NOMA triangle --- underwater wireless optical communication --- temporal dispersion --- bandwidth limitation --- Monte Carlo method --- maximum likelihood sequence estimation --- visible light communication --- nonlinear equalization --- reservoir computing --- neural network (NN) --- autoencoder (AE) --- transceiver design --- nonlinearity --- VLC --- predistortion --- coefficient approximation --- BLSTM --- orthogonal frequency-division multiplexing --- sampling frequency offset --- visible light communications (VLC) --- mmWave communications --- channel modeling --- channel propagation characteristics --- path loss --- delay spread (DS) --- Ricean K-factor --- cluster characteristics --- n/a --- gamma-gamma function
Choose an application
Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC.
Technology: general issues --- History of engineering & technology --- visible light communication (VLC) --- dimming control --- constant transmission efficiency --- error performance --- light-emitting diode (LED) --- visible light communications --- deep learning --- bit error rate --- orthogonal frequency division multiplexing --- index modulation --- POF --- FSO --- LiFi --- LED --- orthogonal frequency division multiplexing (OFDM) --- power efficiency --- peak-to-average-power ratio (PAPR) --- pre-distorted enhanced --- underwater optical wireless communication (UOWC) --- ADO-OFDM --- gamma-gamma function --- full-duplex --- long-reach --- photon counting --- vehicular visible light communication (VVLC) --- intelligent reflecting surface (IRS) --- the number of mirrors --- energy efficiency (EE) --- carrierless amplitude and phase (CAP) modulation --- pairwise coding (PWC) --- dual-mode index modulation (DM) --- chaotic encryption --- visible light positioning (VLP) --- free-space communication --- RGB LED --- non-orthogonal multiple access (NOMA) --- superposition constellation adjustment --- successive interference cancellation --- bit error ratio --- NOMA triangle --- underwater wireless optical communication --- temporal dispersion --- bandwidth limitation --- Monte Carlo method --- maximum likelihood sequence estimation --- visible light communication --- nonlinear equalization --- reservoir computing --- neural network (NN) --- autoencoder (AE) --- transceiver design --- nonlinearity --- VLC --- predistortion --- coefficient approximation --- BLSTM --- orthogonal frequency-division multiplexing --- sampling frequency offset --- visible light communications (VLC) --- mmWave communications --- channel modeling --- channel propagation characteristics --- path loss --- delay spread (DS) --- Ricean K-factor --- cluster characteristics
Listing 1 - 4 of 4 |
Sort by
|