Listing 1 - 6 of 6 |
Sort by
|
Choose an application
One of the great challenges of contemporary society is establishing a sustainable way of life in harmony with the environment without compromising economic growth and technological development. On the other hand, the increase in the world population has driven per capita consumption, and consequently, the generation of waste. Because of this, new materials are being developed from different types of waste. This Special Issue aims to highlight and share recent scientific findings in the area of “New Environmentally Friendly and Sustainable Materials” manufactured from different material types (polymers, ceramics, metallics, and composites) and urban, industrial, mining and agricultural wastes. Moreover, scientific topics such as improving performance and durability, materials characterization, hybrid materials, foams and porous materials, trends and advances, and mechanical, electrical, magnetic, optical, and thermal properties will also be accepted.
Technology: general issues --- History of engineering & technology --- palygorskite --- adsorption --- anionic dye --- cationic dye --- water treatment --- perlite tailings --- aggregate --- alkali–silicate reaction --- ceramic residue --- alkaline activation --- experimental design --- durability tests --- kaolin --- solid residues --- pozzolanic activity --- cement mortar --- carbonation --- poly (lactic acid) --- high-density biopolyethylene --- bioblends --- compatibilization --- scheelite tailings --- sustainable ceramic mass --- red ceramic --- firing parameters
Choose an application
One of the great challenges of contemporary society is establishing a sustainable way of life in harmony with the environment without compromising economic growth and technological development. On the other hand, the increase in the world population has driven per capita consumption, and consequently, the generation of waste. Because of this, new materials are being developed from different types of waste. This Special Issue aims to highlight and share recent scientific findings in the area of “New Environmentally Friendly and Sustainable Materials” manufactured from different material types (polymers, ceramics, metallics, and composites) and urban, industrial, mining and agricultural wastes. Moreover, scientific topics such as improving performance and durability, materials characterization, hybrid materials, foams and porous materials, trends and advances, and mechanical, electrical, magnetic, optical, and thermal properties will also be accepted.
palygorskite --- adsorption --- anionic dye --- cationic dye --- water treatment --- perlite tailings --- aggregate --- alkali–silicate reaction --- ceramic residue --- alkaline activation --- experimental design --- durability tests --- kaolin --- solid residues --- pozzolanic activity --- cement mortar --- carbonation --- poly (lactic acid) --- high-density biopolyethylene --- bioblends --- compatibilization --- scheelite tailings --- sustainable ceramic mass --- red ceramic --- firing parameters
Choose an application
One of the great challenges of contemporary society is establishing a sustainable way of life in harmony with the environment without compromising economic growth and technological development. On the other hand, the increase in the world population has driven per capita consumption, and consequently, the generation of waste. Because of this, new materials are being developed from different types of waste. This Special Issue aims to highlight and share recent scientific findings in the area of “New Environmentally Friendly and Sustainable Materials” manufactured from different material types (polymers, ceramics, metallics, and composites) and urban, industrial, mining and agricultural wastes. Moreover, scientific topics such as improving performance and durability, materials characterization, hybrid materials, foams and porous materials, trends and advances, and mechanical, electrical, magnetic, optical, and thermal properties will also be accepted.
Technology: general issues --- History of engineering & technology --- palygorskite --- adsorption --- anionic dye --- cationic dye --- water treatment --- perlite tailings --- aggregate --- alkali–silicate reaction --- ceramic residue --- alkaline activation --- experimental design --- durability tests --- kaolin --- solid residues --- pozzolanic activity --- cement mortar --- carbonation --- poly (lactic acid) --- high-density biopolyethylene --- bioblends --- compatibilization --- scheelite tailings --- sustainable ceramic mass --- red ceramic --- firing parameters
Choose an application
Concrete is the most widely utilized construction material in the world. Thus, any action intended to enhance the sustainability of the construction industry must consider the supply chain, production, distribution demolition and eventual disposal, landfilling or recycling of this composite material. High-performance concrete may be one of the most effective options to make the construction sector more sustainable. Experience proves that the use of recycled concrete aggregates, as well as the partial replacement of ordinary Portland cement with other supplementary cementitious materials or alternative binders, are generally accepted as the most realistic solutions to reduce the environmental impacts, leading to sufficiently high mechanical performances. In structural applications such as those concerning the seismic and energy retrofitting of existing buildings, the use of high-performance cementitious composites often represents the more cost-effective solution, which allows us to minimize the costs of the intervention and the environmental impact. Eventually, the challenge of enhancing sustainability by raising durability of concrete structures is particularly relevant in those applications where maintenance is particularly expensive and impactful, in terms of both direct intervention costs and indirect costs deriving from downtime. The present Special Issue aims at providing readers with the most recent research results on the aforementioned subjects and further foster a collaboration between the scientific community and the industrial sector on a common commitment towards sustainable concrete constructions.
Technology: general issues --- History of engineering & technology --- recycled concrete aggregate --- recycled aggregate concrete --- durability --- freeze-thaw cycles --- mechanical properties --- concrete --- recycled concrete --- recycled aggregate --- shrinkage --- slags --- cement replacement --- existing beams --- retrofitting method --- environmental assessment --- fly ash --- moment–curvature relationship --- precast elements --- basalt --- concrete properties --- recycled natural basalt --- recycled concrete powder --- seismic retrofitting --- multilayer coating --- Steel Fiber Reinforced Mortar --- energy performance of buildings --- point thermal bridges --- thermal behavior in summer --- case study --- prestressed concrete --- prestress losses --- bridges --- flexural strength --- shear strength --- drying and autogenous shrinkage --- creep --- sustainability --- shear bond --- UHPFRC --- push-off test --- tensile bond strength --- concrete overlay --- strengthening --- existing infrastructures --- digital microscopy --- surface roughness --- mortars --- MSWI bottom ash --- pozzolanic activity --- supplementary cementing materials --- water-retaining structures --- aggressive environment --- n/a --- moment-curvature relationship
Choose an application
Concrete is the most widely utilized construction material in the world. Thus, any action intended to enhance the sustainability of the construction industry must consider the supply chain, production, distribution demolition and eventual disposal, landfilling or recycling of this composite material. High-performance concrete may be one of the most effective options to make the construction sector more sustainable. Experience proves that the use of recycled concrete aggregates, as well as the partial replacement of ordinary Portland cement with other supplementary cementitious materials or alternative binders, are generally accepted as the most realistic solutions to reduce the environmental impacts, leading to sufficiently high mechanical performances. In structural applications such as those concerning the seismic and energy retrofitting of existing buildings, the use of high-performance cementitious composites often represents the more cost-effective solution, which allows us to minimize the costs of the intervention and the environmental impact. Eventually, the challenge of enhancing sustainability by raising durability of concrete structures is particularly relevant in those applications where maintenance is particularly expensive and impactful, in terms of both direct intervention costs and indirect costs deriving from downtime. The present Special Issue aims at providing readers with the most recent research results on the aforementioned subjects and further foster a collaboration between the scientific community and the industrial sector on a common commitment towards sustainable concrete constructions.
recycled concrete aggregate --- recycled aggregate concrete --- durability --- freeze-thaw cycles --- mechanical properties --- concrete --- recycled concrete --- recycled aggregate --- shrinkage --- slags --- cement replacement --- existing beams --- retrofitting method --- environmental assessment --- fly ash --- moment–curvature relationship --- precast elements --- basalt --- concrete properties --- recycled natural basalt --- recycled concrete powder --- seismic retrofitting --- multilayer coating --- Steel Fiber Reinforced Mortar --- energy performance of buildings --- point thermal bridges --- thermal behavior in summer --- case study --- prestressed concrete --- prestress losses --- bridges --- flexural strength --- shear strength --- drying and autogenous shrinkage --- creep --- sustainability --- shear bond --- UHPFRC --- push-off test --- tensile bond strength --- concrete overlay --- strengthening --- existing infrastructures --- digital microscopy --- surface roughness --- mortars --- MSWI bottom ash --- pozzolanic activity --- supplementary cementing materials --- water-retaining structures --- aggressive environment --- n/a --- moment-curvature relationship
Choose an application
Concrete is the most widely utilized construction material in the world. Thus, any action intended to enhance the sustainability of the construction industry must consider the supply chain, production, distribution demolition and eventual disposal, landfilling or recycling of this composite material. High-performance concrete may be one of the most effective options to make the construction sector more sustainable. Experience proves that the use of recycled concrete aggregates, as well as the partial replacement of ordinary Portland cement with other supplementary cementitious materials or alternative binders, are generally accepted as the most realistic solutions to reduce the environmental impacts, leading to sufficiently high mechanical performances. In structural applications such as those concerning the seismic and energy retrofitting of existing buildings, the use of high-performance cementitious composites often represents the more cost-effective solution, which allows us to minimize the costs of the intervention and the environmental impact. Eventually, the challenge of enhancing sustainability by raising durability of concrete structures is particularly relevant in those applications where maintenance is particularly expensive and impactful, in terms of both direct intervention costs and indirect costs deriving from downtime. The present Special Issue aims at providing readers with the most recent research results on the aforementioned subjects and further foster a collaboration between the scientific community and the industrial sector on a common commitment towards sustainable concrete constructions.
Technology: general issues --- History of engineering & technology --- recycled concrete aggregate --- recycled aggregate concrete --- durability --- freeze-thaw cycles --- mechanical properties --- concrete --- recycled concrete --- recycled aggregate --- shrinkage --- slags --- cement replacement --- existing beams --- retrofitting method --- environmental assessment --- fly ash --- moment-curvature relationship --- precast elements --- basalt --- concrete properties --- recycled natural basalt --- recycled concrete powder --- seismic retrofitting --- multilayer coating --- Steel Fiber Reinforced Mortar --- energy performance of buildings --- point thermal bridges --- thermal behavior in summer --- case study --- prestressed concrete --- prestress losses --- bridges --- flexural strength --- shear strength --- drying and autogenous shrinkage --- creep --- sustainability --- shear bond --- UHPFRC --- push-off test --- tensile bond strength --- concrete overlay --- strengthening --- existing infrastructures --- digital microscopy --- surface roughness --- mortars --- MSWI bottom ash --- pozzolanic activity --- supplementary cementing materials --- water-retaining structures --- aggressive environment
Listing 1 - 6 of 6 |
Sort by
|