Listing 1 - 4 of 4 |
Sort by
|
Choose an application
This Special Issue is aimed at highlighting the potentialities of membrane and membrane reactor operations in various sectors of chemical engineering, based on application of the process intensification strategy. In all of the contributions, the principles of process intensification were pursued during the adoption of membrane technology, demonstrating how it may lead to the development of redesigned processes that are more compact and efficient while also being more environmental friendly, energy saving, and amenable to integration with other green processes. This Special Issue comprises a number of experimental and theoretical studies dealing with the application of membrane and membrane reactor technology in various scientific fields of chemical engineering, such as membrane distillation for wastewater treatment, hydrogen production from reforming reactions via inorganic membrane and membrane photoassisted reactors, membrane desalination, gas/liquid phase membrane separation of CO2, and membrane filtration for the recovery of antioxidants from agricultural byproducts, contributing to valorization of the potentialities of membrane operations.
membrane configuration --- solar energy --- modeling --- gas/liquid separation --- wastewater treatment --- membrane distillation --- hydrogel composite membranes --- on-board --- hydrogen --- hydrogen production --- ethanol --- multivariate analysis --- membrane engineering --- micro channel --- two-phase flow --- advanced separations --- water splitting --- micro direct methanol fuel cell (µDMFC) --- ultrafiltration (UF) --- palladium --- ionic liquids membranes --- photocatalysis --- fouling renewable heat sources --- micro contactor --- porous membranes --- desalination --- clarification --- separator --- steam reforming --- membrane reactor --- methane --- photocatalytic membrane reactor --- Z-scheme --- orange press liquor --- CO2 conversion --- microfiltration (MF) --- Pd-based membrane
Choose an application
Over the few coming decades, bio-based and biodegradable plastics produced from sustainable bioresources should essentially substitute the prevalent synthetic plastics produced from exhaustible hydrocarbon fossils. To the greatest extend, this innovative trend has to apply to the packaging manufacturing area and especially to food packaging implementation. To supply the rapid production increment of biodegradable plastics, there must be provided the effective development of scientific-technical potential that promotes the comprehensive exploration of their structural, functional, and dynamic characteristics. In this regard, the transition from passive barrier materials preventing water and oxygen transport as well as bacteria infiltration to active functional packaging that ensures gas diffusion selectivity, antiseptics' and other modifiers' release should be based on the thorough study of biopolymer crystallinity, morphology, diffusivity, controlled biodegradability and life cycle assessment. This Special Issue accumulates the papers of international teams that devoted to scientific and industrial bases providing the biodegradable material development in the barrier and active packaging as well as in agricultural applications. We hope that book will bring great interest to the experts in the area of sustainable biopolymers.
Research & information: general --- bio-HDPE --- GA --- natural additives --- thermal resistance --- UV stability --- food packaging --- antimicrobial properties --- polyethylene --- birch bark extract --- ultrasound --- thermoplastic starch --- biodegradation --- permeability --- diffusion --- sorption --- porous membranes --- hydrophilic and hydrophobic polymers --- PLA bottle --- bio-based and biodegradable polymers --- life cycle assessment --- environmental impact --- ReCiPe2016 method --- packaging material --- bio-based polymer composite --- natural rubber --- water absorption --- mycological test --- biodegradability --- mechanical properties --- poly(3-hydroxybutyrate) (PHB) --- polylactic acid (PLA) --- biomaterials --- gas permeability --- gas diffusion --- segmental dynamics --- electron spin resonance (ESR) --- scanning electron microscopy (SEM) --- differential scanning calorimetry (DSC) --- poly(3-hydroxybutyrate) --- poly(3-hydroxybutyrate-co-3-hydroxyvalerate) --- poly(3-hydroxybutyrate-co-4-methyl-3-hydroxyvalerate) --- hydrolysis --- pancreatic lipase --- mechanical behavior --- chitosan --- polymeric films --- crosslinking --- genipin --- sorption isotherm --- degree of crosslinking --- polylactide --- poly(ethyleneglycol) --- blending under shear deformations --- electrospinning --- oil absorption --- Monte Carlo --- bio-based polymers --- biodegradable packaging --- biopolymer structure --- encapsulation --- life cycle analysis
Choose an application
Over the few coming decades, bio-based and biodegradable plastics produced from sustainable bioresources should essentially substitute the prevalent synthetic plastics produced from exhaustible hydrocarbon fossils. To the greatest extend, this innovative trend has to apply to the packaging manufacturing area and especially to food packaging implementation. To supply the rapid production increment of biodegradable plastics, there must be provided the effective development of scientific-technical potential that promotes the comprehensive exploration of their structural, functional, and dynamic characteristics. In this regard, the transition from passive barrier materials preventing water and oxygen transport as well as bacteria infiltration to active functional packaging that ensures gas diffusion selectivity, antiseptics' and other modifiers' release should be based on the thorough study of biopolymer crystallinity, morphology, diffusivity, controlled biodegradability and life cycle assessment. This Special Issue accumulates the papers of international teams that devoted to scientific and industrial bases providing the biodegradable material development in the barrier and active packaging as well as in agricultural applications. We hope that book will bring great interest to the experts in the area of sustainable biopolymers.
bio-HDPE --- GA --- natural additives --- thermal resistance --- UV stability --- food packaging --- antimicrobial properties --- polyethylene --- birch bark extract --- ultrasound --- thermoplastic starch --- biodegradation --- permeability --- diffusion --- sorption --- porous membranes --- hydrophilic and hydrophobic polymers --- PLA bottle --- bio-based and biodegradable polymers --- life cycle assessment --- environmental impact --- ReCiPe2016 method --- packaging material --- bio-based polymer composite --- natural rubber --- water absorption --- mycological test --- biodegradability --- mechanical properties --- poly(3-hydroxybutyrate) (PHB) --- polylactic acid (PLA) --- biomaterials --- gas permeability --- gas diffusion --- segmental dynamics --- electron spin resonance (ESR) --- scanning electron microscopy (SEM) --- differential scanning calorimetry (DSC) --- poly(3-hydroxybutyrate) --- poly(3-hydroxybutyrate-co-3-hydroxyvalerate) --- poly(3-hydroxybutyrate-co-4-methyl-3-hydroxyvalerate) --- hydrolysis --- pancreatic lipase --- mechanical behavior --- chitosan --- polymeric films --- crosslinking --- genipin --- sorption isotherm --- degree of crosslinking --- polylactide --- poly(ethyleneglycol) --- blending under shear deformations --- electrospinning --- oil absorption --- Monte Carlo --- bio-based polymers --- biodegradable packaging --- biopolymer structure --- encapsulation --- life cycle analysis
Choose an application
Over the few coming decades, bio-based and biodegradable plastics produced from sustainable bioresources should essentially substitute the prevalent synthetic plastics produced from exhaustible hydrocarbon fossils. To the greatest extend, this innovative trend has to apply to the packaging manufacturing area and especially to food packaging implementation. To supply the rapid production increment of biodegradable plastics, there must be provided the effective development of scientific-technical potential that promotes the comprehensive exploration of their structural, functional, and dynamic characteristics. In this regard, the transition from passive barrier materials preventing water and oxygen transport as well as bacteria infiltration to active functional packaging that ensures gas diffusion selectivity, antiseptics' and other modifiers' release should be based on the thorough study of biopolymer crystallinity, morphology, diffusivity, controlled biodegradability and life cycle assessment. This Special Issue accumulates the papers of international teams that devoted to scientific and industrial bases providing the biodegradable material development in the barrier and active packaging as well as in agricultural applications. We hope that book will bring great interest to the experts in the area of sustainable biopolymers.
Research & information: general --- bio-HDPE --- GA --- natural additives --- thermal resistance --- UV stability --- food packaging --- antimicrobial properties --- polyethylene --- birch bark extract --- ultrasound --- thermoplastic starch --- biodegradation --- permeability --- diffusion --- sorption --- porous membranes --- hydrophilic and hydrophobic polymers --- PLA bottle --- bio-based and biodegradable polymers --- life cycle assessment --- environmental impact --- ReCiPe2016 method --- packaging material --- bio-based polymer composite --- natural rubber --- water absorption --- mycological test --- biodegradability --- mechanical properties --- poly(3-hydroxybutyrate) (PHB) --- polylactic acid (PLA) --- biomaterials --- gas permeability --- gas diffusion --- segmental dynamics --- electron spin resonance (ESR) --- scanning electron microscopy (SEM) --- differential scanning calorimetry (DSC) --- poly(3-hydroxybutyrate) --- poly(3-hydroxybutyrate-co-3-hydroxyvalerate) --- poly(3-hydroxybutyrate-co-4-methyl-3-hydroxyvalerate) --- hydrolysis --- pancreatic lipase --- mechanical behavior --- chitosan --- polymeric films --- crosslinking --- genipin --- sorption isotherm --- degree of crosslinking --- polylactide --- poly(ethyleneglycol) --- blending under shear deformations --- electrospinning --- oil absorption --- Monte Carlo --- bio-based polymers --- biodegradable packaging --- biopolymer structure --- encapsulation --- life cycle analysis
Listing 1 - 4 of 4 |
Sort by
|