Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2019 (3)

Listing 1 - 3 of 3
Sort by

Book
Pd-based Membranes. Overview and Perspectives
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.

Keywords

hydrides --- membrane --- Pd-Ag membranes --- electroless plating --- defect distribution --- hydrogen --- hydrogen production --- suspension plasma spraying --- chemical potential --- review --- grain boundary --- manufacturing --- palladium --- LOHC --- palladium alloy --- open architecture --- PdAg-membrane --- hydrogen permeation --- modelling --- membranes --- pore mouth size distribution --- MLLDP --- solubility --- closed architecture --- demonstration --- Pd-based membrane --- methanol steam reforming --- activity --- micro reactor --- microstructured --- hydrogen separation --- membrane reactors --- Pd alloy --- hydrogen purification --- palladium-based membrane --- gas to liquid --- dense Pd membrane --- propylene --- heat treatment --- surface characterization --- porous membrane --- multi-stage --- membrane reactor --- dehydrogenation --- hydrides --- membrane --- Pd-Ag membranes --- electroless plating --- defect distribution --- hydrogen --- hydrogen production --- suspension plasma spraying --- chemical potential --- review --- grain boundary --- manufacturing --- palladium --- LOHC --- palladium alloy --- open architecture --- PdAg-membrane --- hydrogen permeation --- modelling --- membranes --- pore mouth size distribution --- MLLDP --- solubility --- closed architecture --- demonstration --- Pd-based membrane --- methanol steam reforming --- activity --- micro reactor --- microstructured --- hydrogen separation --- membrane reactors --- Pd alloy --- hydrogen purification --- palladium-based membrane --- gas to liquid --- dense Pd membrane --- propylene --- heat treatment --- surface characterization --- porous membrane --- multi-stage --- membrane reactor --- dehydrogenation


Book
Pd-based Membranes. Overview and Perspectives
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.


Book
Pd-based Membranes. Overview and Perspectives
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.

Listing 1 - 3 of 3
Sort by