Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The recovery of solid wastes for the preparation of innovative composite materials not only represents an economic advantage, but also offers an ecological opportunity for the utilization of by-products which would otherwise be landfilled. Specifically, the reuse and recycling of waste lead to important savings of raw materials and energy, since these by-products, generally deriv from agricultural or industrial activities, are abundant in nature. Moreover, a reduction of the environmental and related sanitary impacts can be also achieved. For this reason, a recycling operation is fundamental for the improvement of the environmental sustainability, because these secondary raw materials become a resource that can be easily reused without the modification of the peculiar characteristics, in order to obtain new and performing composites, with a low specific weight, high durability, and long life cycle.
History of engineering & technology --- Radioactive soil waste --- Gd2Ti2O7 pyrochlore --- SHS --- CeO2 --- Immobilization --- cementitious grout --- green grout --- cement --- slag substitution --- valorization --- circular economy --- cellulose aerogel --- oil absorbent --- cellulose --- white bamboo fibril --- water pollution --- natural rubber --- nanosilica --- mechanical property --- fertilizer plant --- hexafluorosilicic acid --- waste water --- cement composites --- recycled waste porous glass --- end-of-life tyre rubber --- safe production --- thermal insulation --- mechanical resistance --- render --- cement and cement-lime reinforced mortars --- natural fiber --- sheep’s wool --- sustainability --- chitosan film --- emerging pollutants --- ketoprofen --- food waste --- adsorption --- recycle --- recycled expanded polystyrene --- cement mortars --- eggshell --- Direct Blue 78 --- kinetics --- isotherms --- pulsed light --- fiber reinforced --- cementless composites --- microscopic property --- co-fired fly ash --- green materials --- biochar --- wheat straw --- sorbent --- cobalt --- copper --- soil --- n/a --- sheep's wool
Choose an application
The recovery of solid wastes for the preparation of innovative composite materials not only represents an economic advantage, but also offers an ecological opportunity for the utilization of by-products which would otherwise be landfilled. Specifically, the reuse and recycling of waste lead to important savings of raw materials and energy, since these by-products, generally deriv from agricultural or industrial activities, are abundant in nature. Moreover, a reduction of the environmental and related sanitary impacts can be also achieved. For this reason, a recycling operation is fundamental for the improvement of the environmental sustainability, because these secondary raw materials become a resource that can be easily reused without the modification of the peculiar characteristics, in order to obtain new and performing composites, with a low specific weight, high durability, and long life cycle.
Radioactive soil waste --- Gd2Ti2O7 pyrochlore --- SHS --- CeO2 --- Immobilization --- cementitious grout --- green grout --- cement --- slag substitution --- valorization --- circular economy --- cellulose aerogel --- oil absorbent --- cellulose --- white bamboo fibril --- water pollution --- natural rubber --- nanosilica --- mechanical property --- fertilizer plant --- hexafluorosilicic acid --- waste water --- cement composites --- recycled waste porous glass --- end-of-life tyre rubber --- safe production --- thermal insulation --- mechanical resistance --- render --- cement and cement-lime reinforced mortars --- natural fiber --- sheep’s wool --- sustainability --- chitosan film --- emerging pollutants --- ketoprofen --- food waste --- adsorption --- recycle --- recycled expanded polystyrene --- cement mortars --- eggshell --- Direct Blue 78 --- kinetics --- isotherms --- pulsed light --- fiber reinforced --- cementless composites --- microscopic property --- co-fired fly ash --- green materials --- biochar --- wheat straw --- sorbent --- cobalt --- copper --- soil --- n/a --- sheep's wool
Choose an application
The recovery of solid wastes for the preparation of innovative composite materials not only represents an economic advantage, but also offers an ecological opportunity for the utilization of by-products which would otherwise be landfilled. Specifically, the reuse and recycling of waste lead to important savings of raw materials and energy, since these by-products, generally deriv from agricultural or industrial activities, are abundant in nature. Moreover, a reduction of the environmental and related sanitary impacts can be also achieved. For this reason, a recycling operation is fundamental for the improvement of the environmental sustainability, because these secondary raw materials become a resource that can be easily reused without the modification of the peculiar characteristics, in order to obtain new and performing composites, with a low specific weight, high durability, and long life cycle.
History of engineering & technology --- Radioactive soil waste --- Gd2Ti2O7 pyrochlore --- SHS --- CeO2 --- Immobilization --- cementitious grout --- green grout --- cement --- slag substitution --- valorization --- circular economy --- cellulose aerogel --- oil absorbent --- cellulose --- white bamboo fibril --- water pollution --- natural rubber --- nanosilica --- mechanical property --- fertilizer plant --- hexafluorosilicic acid --- waste water --- cement composites --- recycled waste porous glass --- end-of-life tyre rubber --- safe production --- thermal insulation --- mechanical resistance --- render --- cement and cement-lime reinforced mortars --- natural fiber --- sheep's wool --- sustainability --- chitosan film --- emerging pollutants --- ketoprofen --- food waste --- adsorption --- recycle --- recycled expanded polystyrene --- cement mortars --- eggshell --- Direct Blue 78 --- kinetics --- isotherms --- pulsed light --- fiber reinforced --- cementless composites --- microscopic property --- co-fired fly ash --- green materials --- biochar --- wheat straw --- sorbent --- cobalt --- copper --- soil
Choose an application
The semiconductor titanium dioxide (TiO2) has been evolved as a prototypical material to understand the photocatalytic process, and has been demonstrated for various photocatalytic applications such as pollutants degradation, water splitting, heavy metal reduction, CO2 conversion, N2 fixation, bacterial disinfection, etc. Rigorous photocatalytic studies on TiO2 have paved the way to understanding the various chemical processes involved and the physical parameters (optical and electrical) required to design and construct diverse photocatalytic systems. Accordingly, it has been realized that an effective photocatalyst should have ideal band edge potential, narrow band gap energy, reduced charge recombination, enhanced charge separation, improved interfacial charge transfer, surface-rich catalytic sites, etc. As a result, many strategies have been developed to design a variety of photocatalytic systems, which include doping, composite formation, sensitization, co-catalyst loading, etc. Towards highlighting the above-mentioned diversities in TiO2 photocatalysis, there have been many interesting original research works on TiO2, involving material designs for various photocatalytic applications published in this Special Issue. In addition, some excellent review papers have also been published in this Special Issue, focusing on the various TiO2-based photocatalytic systems and their mechanisms and applications.
Research & information: general --- modified L-H model --- N-TiO2 --- photocatalytic degradation --- benzene --- antibacterial --- copper oxide --- photocatalyst --- titanium dioxide --- thin film --- visible light --- photovoltaic conversion --- interfacial charge-transfer transition --- 7,7,8,8-tetracyanoquinodimethane --- Nb-doped TiO2 --- N-doped graphene quantum dots --- TiO2 --- photocatalytic performance --- pyridinic N --- graphitic N --- solid-phase photocatalytic degradation --- polyvinyl borate --- decahedral-shaped anatase titania particles --- {001} and {101} facets --- facet-selective metal photodeposition --- pH dependence --- zeta potential --- facet-selective reaction --- photocatalysis --- deNOxing --- Titania --- photophysics --- metal oxides --- environment --- 2D materials --- composite --- iron-doped TiO2 --- photocatalytic activity --- low UV irradiation --- hydroxyl radical --- estriol --- W-Mo dopants --- nanoparticles --- non-metal- doped TiO2 --- nitroaromatic compounds --- reduction --- selectivity --- Titanium dioxide --- bismuth molybdate --- lignin --- UV light --- Photo-CREC Water II reactor --- Palladium --- Hydrogen production --- Quantum Yield --- magnetic property --- reusable --- photoreduction --- microporous material --- adsorption --- air purification --- porous glass --- mesocrystals --- synthesis --- modification --- Ru-Ti oxide catalysts --- HCl oxidation --- oxygen species --- Ce incorporation --- active phase-support interactions --- bleached wood support materials --- 3D photocatalyst --- UV transmittance --- floatable --- recyclable --- TiO2C composite --- acid catalyst --- dehydration --- fructose --- 5-Hydroxymethylfurfural --- Microcystis aeruginosa --- microcystin --- controlled periodic illumination --- advanced oxidation process --- hexabromocyclododecane --- environmental management --- advanced oxidation processes --- energy band engineering --- morphology modification --- applications --- Titanium dioxide (TiO2) --- visible-light-sensitive photocatalyst --- N-doped TiO2 --- plasmonic Au NPs --- interfacial surface complex (ISC) --- selective oxidation --- decomposition of VOC --- carbon nitride (C3N4) --- alkoxide --- ligand to metal charge transfer (LMCT) --- hydrogen production --- TiO2-HKUST-1 composites --- solar light --- electron transfer --- graphene quantum dots --- heterojunction --- process optimization --- response surface methodology --- kinetic study --- Advanced oxidation processes (AOPs) --- TiO2 catalyst --- textile wastewater --- oxygen vacancy --- polymeric composites --- photoelectrochemistry --- co-modification --- solar energy conversion --- p-n heterojunction --- g-C3N4 --- charge separation --- semiconductors --- redox reactions --- band gap engineering --- nanostructures --- n/a --- in-situ formation --- anatase nanoparticles --- H-titanate nanotubes --- dual-phase --- low temperature
Choose an application
The semiconductor titanium dioxide (TiO2) has been evolved as a prototypical material to understand the photocatalytic process, and has been demonstrated for various photocatalytic applications such as pollutants degradation, water splitting, heavy metal reduction, CO2 conversion, N2 fixation, bacterial disinfection, etc. Rigorous photocatalytic studies on TiO2 have paved the way to understanding the various chemical processes involved and the physical parameters (optical and electrical) required to design and construct diverse photocatalytic systems. Accordingly, it has been realized that an effective photocatalyst should have ideal band edge potential, narrow band gap energy, reduced charge recombination, enhanced charge separation, improved interfacial charge transfer, surface-rich catalytic sites, etc. As a result, many strategies have been developed to design a variety of photocatalytic systems, which include doping, composite formation, sensitization, co-catalyst loading, etc. Towards highlighting the above-mentioned diversities in TiO2 photocatalysis, there have been many interesting original research works on TiO2, involving material designs for various photocatalytic applications published in this Special Issue. In addition, some excellent review papers have also been published in this Special Issue, focusing on the various TiO2-based photocatalytic systems and their mechanisms and applications.
modified L-H model --- N-TiO2 --- photocatalytic degradation --- benzene --- antibacterial --- copper oxide --- photocatalyst --- titanium dioxide --- thin film --- visible light --- photovoltaic conversion --- interfacial charge-transfer transition --- 7,7,8,8-tetracyanoquinodimethane --- Nb-doped TiO2 --- N-doped graphene quantum dots --- TiO2 --- photocatalytic performance --- pyridinic N --- graphitic N --- solid-phase photocatalytic degradation --- polyvinyl borate --- decahedral-shaped anatase titania particles --- {001} and {101} facets --- facet-selective metal photodeposition --- pH dependence --- zeta potential --- facet-selective reaction --- photocatalysis --- deNOxing --- Titania --- photophysics --- metal oxides --- environment --- 2D materials --- composite --- iron-doped TiO2 --- photocatalytic activity --- low UV irradiation --- hydroxyl radical --- estriol --- W-Mo dopants --- nanoparticles --- non-metal- doped TiO2 --- nitroaromatic compounds --- reduction --- selectivity --- Titanium dioxide --- bismuth molybdate --- lignin --- UV light --- Photo-CREC Water II reactor --- Palladium --- Hydrogen production --- Quantum Yield --- magnetic property --- reusable --- photoreduction --- microporous material --- adsorption --- air purification --- porous glass --- mesocrystals --- synthesis --- modification --- Ru-Ti oxide catalysts --- HCl oxidation --- oxygen species --- Ce incorporation --- active phase-support interactions --- bleached wood support materials --- 3D photocatalyst --- UV transmittance --- floatable --- recyclable --- TiO2C composite --- acid catalyst --- dehydration --- fructose --- 5-Hydroxymethylfurfural --- Microcystis aeruginosa --- microcystin --- controlled periodic illumination --- advanced oxidation process --- hexabromocyclododecane --- environmental management --- advanced oxidation processes --- energy band engineering --- morphology modification --- applications --- Titanium dioxide (TiO2) --- visible-light-sensitive photocatalyst --- N-doped TiO2 --- plasmonic Au NPs --- interfacial surface complex (ISC) --- selective oxidation --- decomposition of VOC --- carbon nitride (C3N4) --- alkoxide --- ligand to metal charge transfer (LMCT) --- hydrogen production --- TiO2-HKUST-1 composites --- solar light --- electron transfer --- graphene quantum dots --- heterojunction --- process optimization --- response surface methodology --- kinetic study --- Advanced oxidation processes (AOPs) --- TiO2 catalyst --- textile wastewater --- oxygen vacancy --- polymeric composites --- photoelectrochemistry --- co-modification --- solar energy conversion --- p-n heterojunction --- g-C3N4 --- charge separation --- semiconductors --- redox reactions --- band gap engineering --- nanostructures --- n/a --- in-situ formation --- anatase nanoparticles --- H-titanate nanotubes --- dual-phase --- low temperature
Choose an application
The semiconductor titanium dioxide (TiO2) has been evolved as a prototypical material to understand the photocatalytic process, and has been demonstrated for various photocatalytic applications such as pollutants degradation, water splitting, heavy metal reduction, CO2 conversion, N2 fixation, bacterial disinfection, etc. Rigorous photocatalytic studies on TiO2 have paved the way to understanding the various chemical processes involved and the physical parameters (optical and electrical) required to design and construct diverse photocatalytic systems. Accordingly, it has been realized that an effective photocatalyst should have ideal band edge potential, narrow band gap energy, reduced charge recombination, enhanced charge separation, improved interfacial charge transfer, surface-rich catalytic sites, etc. As a result, many strategies have been developed to design a variety of photocatalytic systems, which include doping, composite formation, sensitization, co-catalyst loading, etc. Towards highlighting the above-mentioned diversities in TiO2 photocatalysis, there have been many interesting original research works on TiO2, involving material designs for various photocatalytic applications published in this Special Issue. In addition, some excellent review papers have also been published in this Special Issue, focusing on the various TiO2-based photocatalytic systems and their mechanisms and applications.
Research & information: general --- modified L-H model --- N-TiO2 --- photocatalytic degradation --- benzene --- antibacterial --- copper oxide --- photocatalyst --- titanium dioxide --- thin film --- visible light --- photovoltaic conversion --- interfacial charge-transfer transition --- 7,7,8,8-tetracyanoquinodimethane --- Nb-doped TiO2 --- N-doped graphene quantum dots --- TiO2 --- photocatalytic performance --- pyridinic N --- graphitic N --- solid-phase photocatalytic degradation --- polyvinyl borate --- decahedral-shaped anatase titania particles --- {001} and {101} facets --- facet-selective metal photodeposition --- pH dependence --- zeta potential --- facet-selective reaction --- photocatalysis --- deNOxing --- Titania --- photophysics --- metal oxides --- environment --- 2D materials --- composite --- iron-doped TiO2 --- photocatalytic activity --- low UV irradiation --- hydroxyl radical --- estriol --- W-Mo dopants --- nanoparticles --- non-metal- doped TiO2 --- nitroaromatic compounds --- reduction --- selectivity --- Titanium dioxide --- bismuth molybdate --- lignin --- UV light --- Photo-CREC Water II reactor --- Palladium --- Hydrogen production --- Quantum Yield --- magnetic property --- reusable --- photoreduction --- microporous material --- adsorption --- air purification --- porous glass --- mesocrystals --- synthesis --- modification --- Ru-Ti oxide catalysts --- HCl oxidation --- oxygen species --- Ce incorporation --- active phase-support interactions --- bleached wood support materials --- 3D photocatalyst --- UV transmittance --- floatable --- recyclable --- TiO2C composite --- acid catalyst --- dehydration --- fructose --- 5-Hydroxymethylfurfural --- Microcystis aeruginosa --- microcystin --- controlled periodic illumination --- advanced oxidation process --- hexabromocyclododecane --- environmental management --- advanced oxidation processes --- energy band engineering --- morphology modification --- applications --- Titanium dioxide (TiO2) --- visible-light-sensitive photocatalyst --- N-doped TiO2 --- plasmonic Au NPs --- interfacial surface complex (ISC) --- selective oxidation --- decomposition of VOC --- carbon nitride (C3N4) --- alkoxide --- ligand to metal charge transfer (LMCT) --- hydrogen production --- TiO2-HKUST-1 composites --- solar light --- electron transfer --- graphene quantum dots --- heterojunction --- process optimization --- response surface methodology --- kinetic study --- Advanced oxidation processes (AOPs) --- TiO2 catalyst --- textile wastewater --- oxygen vacancy --- polymeric composites --- photoelectrochemistry --- co-modification --- solar energy conversion --- p-n heterojunction --- g-C3N4 --- charge separation --- semiconductors --- redox reactions --- band gap engineering --- nanostructures --- in-situ formation --- anatase nanoparticles --- H-titanate nanotubes --- dual-phase --- low temperature
Listing 1 - 6 of 6 |
Sort by
|