Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (4)

2020 (3)

Listing 1 - 7 of 7
Sort by

Book
Advances in Experimental and Computational Rheology, Volume II
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spreading an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. Following a successful first volume, we are now launching this second volume to continue to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems, and composites) and processes.


Book
Advances in Experimental and Computational Rheology, Volume II
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spreading an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. Following a successful first volume, we are now launching this second volume to continue to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems, and composites) and processes.


Book
Advances in Experimental and Computational Rheology, Volume II
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spreading an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. Following a successful first volume, we are now launching this second volume to continue to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems, and composites) and processes.

Keywords

History of engineering & technology --- graphene oxide --- polyethylene glycol --- rheological characterization --- human milk --- tube feeding --- breastfeeding --- viscosity --- complex modulus --- density --- rheological measurements --- non-viscometric geometries --- Couette analogy --- shear thinning fluids --- suspensions --- bread --- whey --- complex fluids --- experimental rheology --- breadmaking --- yield stress --- grout --- polypropylene fiber --- masonry --- consolidation --- rheology --- drop impact --- elasto-viscoplastic material --- free surface --- gravitational effects --- MRSA --- S. aureus --- antibiotics --- oxacillin --- bactericidal --- injection molding --- filling stage --- Cross-WLF model --- Tait model --- finite volume method --- openInjMoldSim --- OpenFOAM® --- Boger fluids --- circular contraction flow --- lip vortex --- pressure-drops --- vortex-enhancement --- first normal-stress difference --- swIM model --- reactive extrusion --- data-driven --- machine learning --- artificial engineering --- polymer processing --- digital twin --- graphene oxide --- polyethylene glycol --- rheological characterization --- human milk --- tube feeding --- breastfeeding --- viscosity --- complex modulus --- density --- rheological measurements --- non-viscometric geometries --- Couette analogy --- shear thinning fluids --- suspensions --- bread --- whey --- complex fluids --- experimental rheology --- breadmaking --- yield stress --- grout --- polypropylene fiber --- masonry --- consolidation --- rheology --- drop impact --- elasto-viscoplastic material --- free surface --- gravitational effects --- MRSA --- S. aureus --- antibiotics --- oxacillin --- bactericidal --- injection molding --- filling stage --- Cross-WLF model --- Tait model --- finite volume method --- openInjMoldSim --- OpenFOAM® --- Boger fluids --- circular contraction flow --- lip vortex --- pressure-drops --- vortex-enhancement --- first normal-stress difference --- swIM model --- reactive extrusion --- data-driven --- machine learning --- artificial engineering --- polymer processing --- digital twin


Book
High Performance Concrete
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.

Keywords

Technology: general issues --- History of engineering & technology --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength


Book
Synthesis, Processing, Structure and Properties of Polymer Materials
Authors: ---
ISBN: 3036558977 3036558985 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aim of this reprint is to highlight the progress and fundamental aspects for the synthesis, characterization, properties, and application of novel polymeric materials, as well as their copolymers, composites, and nanocomposites.

Keywords

Plastics & polymers technology --- poly(lactic acid) --- epoxidized natural rubber --- polymer blend --- natural additives --- antioxidant --- polymer blending --- radiation crosslinking --- polyethylene --- polyurethane --- heat resistance --- mechanical property --- aramid fiber --- ballistic test --- failure mechanism --- cyclotriphosphazane --- flame retardancy --- dielectric properties --- azo compound --- liquid crystal --- structure–property relationship --- axial behavior --- geopolymer concrete (GC) --- ferrocement --- finite element analysis (FEA) --- polyacrylonitrile --- lignin --- electrospinning --- selective chemical dissolution --- porous nanofibers --- nanofibers --- soft template --- peat soil --- cement --- stabilization --- fly ash --- polypropylene fiber --- unconfined compressive strength (UCS) --- California bearing ratio (CBR) --- scanning electron microscopy (SEM) --- bio-based polyurethanes --- jatropha oil --- algae oil --- recovered palm oil --- epoxy composite --- green composite --- corn cob --- polycarbonates --- transesterification --- polycondensation --- polymer --- hydrogen --- hydrophobic --- sensing --- nanostructures --- palladium --- polymer composite --- fibre-prestressing --- residual stresses --- PCL–SBA-15 nanocomposites --- real-time variable-temperature synchrotron measurements --- confinement --- mechanical behavior --- nanoclay --- nanocomposites --- mechanical properties --- impact properties --- hardness --- polymer composites --- graphene quantum dots --- bioactive --- biomedical --- synthesis --- PVK --- hexylthiophene --- PANI --- nanocomposite --- photovoltaic cells --- DFT --- polyhydroxyalkanoates --- fibers --- biodegradability --- packaging --- patents --- poly(aminopropyl/phenyl)silsesquioxane --- thiol-ene --- kinetics --- activation energy --- polymer characterization --- viscoelasticity --- DMA --- solution blow spinning --- polyethylene oxide --- morphology --- materials characterization --- polymer dissolution --- kaolin flocculation --- aggregate resistance --- salinity --- flocculation kinetic --- shear rate --- thermoplastic starch --- silane --- foam --- carbon dioxide --- microcapsules --- dip coating --- encapsulation --- spectroscopy --- microscopy --- antibacterial silver --- polyaniline --- dodecylbenzene sulfonic acid --- γ-Al2O3 --- in situ polymerization --- core–shell nanocomposite --- polyphosphazene --- micro-nanospheres --- species-absorbing mechanisms --- hydrophobicity --- thermochemical --- PVDF --- alkali-grafting --- α-methyl styrene --- acrylonitrile --- proton exchange membrane --- block copolymers --- random copolymers --- catalytic membranes --- esterification --- isopropyl acetate --- bioinspired bottlebrush polymers --- aqueous boundary lubrication --- friction --- wear resistance --- supramolecular hydrogel --- acrylic acid --- maleic anhydride --- terpyridine --- coordination interaction --- thermoplastic polyurethanes --- surface free energy --- dithiol --- differential scanning calorimetry --- optical properties --- arsine --- ligands --- polypropylene --- catalyst --- degradation --- sol-gel process --- 3D network hybrid materials --- nanoparticles --- nanodispersity --- ionic liquids --- n/a --- structure-property relationship --- PCL-SBA-15 nanocomposites --- core-shell nanocomposite


Book
High Performance Concrete
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.

Keywords

Technology: general issues --- History of engineering & technology --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength


Book
High Performance Concrete
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.

Keywords

ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength

Listing 1 - 7 of 7
Sort by