Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (3)

2021 (2)

Listing 1 - 5 of 5
Sort by

Book
Breeding, Genetics and Genomics of Ornamental Plants
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ornamental crops account for more than US $42 billion globally. With the exception of few floral species, limited genetic, genomic, and breeding information is publicly available, owing to the fact that the majority of breeding work is performed by the private sector. Public research programs are increasingly participating in ornamental cultivar development and genetic studies. With lower sequencing costs, genomic information of non-model species including ornamental crops is continuously becoming available. Ornamental breeding utilizes a wide array of breeding strategies ranging from traditional crossing and selection methods to the use of next-generation sequencing in genomics and transcriptomics for gene identification and trait development. A continuing search of new species for the ornamentals industry has resulted in the utilization of tools that increase diversity and in the development of alternative methods for obtaining new crops by achieving interspecific and intergeneric crosses. This Special Issue aimed to present papers on new breeding methods, novel cultivars and species entering the ornamental industry, the identification of genes conferring novel traits, technological developments in ornamentals research, and the use of next-generation sequencing to improve ornamental plants.


Book
Breeding, Genetics and Genomics of Ornamental Plants
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ornamental crops account for more than US $42 billion globally. With the exception of few floral species, limited genetic, genomic, and breeding information is publicly available, owing to the fact that the majority of breeding work is performed by the private sector. Public research programs are increasingly participating in ornamental cultivar development and genetic studies. With lower sequencing costs, genomic information of non-model species including ornamental crops is continuously becoming available. Ornamental breeding utilizes a wide array of breeding strategies ranging from traditional crossing and selection methods to the use of next-generation sequencing in genomics and transcriptomics for gene identification and trait development. A continuing search of new species for the ornamentals industry has resulted in the utilization of tools that increase diversity and in the development of alternative methods for obtaining new crops by achieving interspecific and intergeneric crosses. This Special Issue aimed to present papers on new breeding methods, novel cultivars and species entering the ornamental industry, the identification of genes conferring novel traits, technological developments in ornamentals research, and the use of next-generation sequencing to improve ornamental plants.


Book
Breeding, Genetics and Genomics of Ornamental Plants
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ornamental crops account for more than US $42 billion globally. With the exception of few floral species, limited genetic, genomic, and breeding information is publicly available, owing to the fact that the majority of breeding work is performed by the private sector. Public research programs are increasingly participating in ornamental cultivar development and genetic studies. With lower sequencing costs, genomic information of non-model species including ornamental crops is continuously becoming available. Ornamental breeding utilizes a wide array of breeding strategies ranging from traditional crossing and selection methods to the use of next-generation sequencing in genomics and transcriptomics for gene identification and trait development. A continuing search of new species for the ornamentals industry has resulted in the utilization of tools that increase diversity and in the development of alternative methods for obtaining new crops by achieving interspecific and intergeneric crosses. This Special Issue aimed to present papers on new breeding methods, novel cultivars and species entering the ornamental industry, the identification of genes conferring novel traits, technological developments in ornamentals research, and the use of next-generation sequencing to improve ornamental plants.


Book
Chromosome Manipulation for Plant Breeding Purposes
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The ability to exploit the potential of wild relatives carrying beneficial traits is a major goal in breeding programs. However, it relies on the possibility of the chromosomes from the crop and wild species in interspecific crosses to recognize, associate, and undergo crossover formation during meiosis, the cellular process responsible for producing gametes with half the genetic content of their parent cells. Unfortunately, in most cases, a barrier exists preventing successful hybridization between the wild and crop chromosomes. Understanding the mechanisms controlling chromosome associations during meiosis are of great interest in plant breeding and will allow chromosome manipulation to introduce genetic variability from related species into a crop. In addition to interspecific hybrids, other materials, such as natural and synthetic polyploids and introgression lines derived from allopolyploids, among others, are powerful tools in the framework of plant breeding. For example, an extra pair of alien chromosomes in the full genome complement of a crop species has been frequently used as a first step to access genetic variation from the secondary gene pool in breeding programs. In addition, such introgression lines are also pivotal in the study of interspecific genetic interactions, in the chromosomal location of genetic markers, and in the study of chromosome structure and behavior in somatic and meiotic cells. Contained in this Special Issue are accounts of original research, including new tools to identify chromosome introgressions and the development and characterization of introgression lines and interspecific hybrids carrying desirable agronomic traits for plant breeding purposes. Also included are reviews about the chromosome engineering of tropical cash crops and the effect of chromosome structure on chromosome associations and recombination during meiosis to allow chromosome manipulation in the framework of plant breeding.


Book
Chromosome Manipulation for Plant Breeding Purposes
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The ability to exploit the potential of wild relatives carrying beneficial traits is a major goal in breeding programs. However, it relies on the possibility of the chromosomes from the crop and wild species in interspecific crosses to recognize, associate, and undergo crossover formation during meiosis, the cellular process responsible for producing gametes with half the genetic content of their parent cells. Unfortunately, in most cases, a barrier exists preventing successful hybridization between the wild and crop chromosomes. Understanding the mechanisms controlling chromosome associations during meiosis are of great interest in plant breeding and will allow chromosome manipulation to introduce genetic variability from related species into a crop. In addition to interspecific hybrids, other materials, such as natural and synthetic polyploids and introgression lines derived from allopolyploids, among others, are powerful tools in the framework of plant breeding. For example, an extra pair of alien chromosomes in the full genome complement of a crop species has been frequently used as a first step to access genetic variation from the secondary gene pool in breeding programs. In addition, such introgression lines are also pivotal in the study of interspecific genetic interactions, in the chromosomal location of genetic markers, and in the study of chromosome structure and behavior in somatic and meiotic cells. Contained in this Special Issue are accounts of original research, including new tools to identify chromosome introgressions and the development and characterization of introgression lines and interspecific hybrids carrying desirable agronomic traits for plant breeding purposes. Also included are reviews about the chromosome engineering of tropical cash crops and the effect of chromosome structure on chromosome associations and recombination during meiosis to allow chromosome manipulation in the framework of plant breeding.

Listing 1 - 5 of 5
Sort by