Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (1)

2021 (6)

Listing 1 - 7 of 7
Sort by

Book
Advanced Materials in Drug Release and Drug Delivery Systems
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Development of new drug molecules is costly and requires longitudinal, wide-ranging studies; therefore, designing advanced pharmaceutical formulations for existing and well-known drugs seems to be an attractive device for the pharmaceutical industry. Properly formulated drug delivery systems can improve pharmacological activity, efficacy and safety of the active substances. Advanced materials applied as pharmaceutical excipients in designing drug delivery systems can help solve problems concerning the required drug release—with the defined dissolution rate and at the determined site. Novel drug carriers enable more effective drug delivery, with improved safety and with fewer side effects. Investigations concerning advanced materials represent a rapidly growing research field in material/polymer science, chemical engineering and pharmaceutical technology. Exploring novel materials or modifying and combining existing ones is now a crucial trend in pharmaceutical technology. Eleven articles included in the the Special Issue “Advanced Materials in Drug Release and Drug Delivery Systems” present the most recent insights into the utilization of different materials with promising potential in drug delivery and into different formulation approaches that can be used in the design of pharmaceutical formulations.

Keywords

Technology: general issues --- mesoporous silica --- layer-by-layer --- FITC-peptide --- hyaluronic acid --- multilayer film --- host-guest interaction --- total alkaloids from Alstonia scholaris leaves --- mPEG-PLA --- microspheres --- drug release --- biocompatibility --- CO administration --- therapeutic agent --- pharmaceutical drugs --- heme oxygenase --- CO-releasing materials --- CO-releasing molecules --- organometallic complexes --- pharmacokinetic functions --- pathological role --- CO kinetic profile --- cellular targets --- GQDs --- real-time tracking --- optical-magneto nanoparticles --- in vivo --- ethylcellulose --- polymeric material --- cellulose derivative --- pharmaceutical excipient --- hydrogel --- drug delivery --- polymer --- immobilization of drug --- gelatin --- gastro-resistant --- films --- capsules --- structure --- sirolimus --- electrospinning --- polycaprolactone --- 3D matrix --- drug-eluting stents --- spray drying --- microparticles --- rupatadine fumarate --- orodispersible minitablets --- taste masking --- Bicalutamide --- Poloxamer® 407 --- Macrogol 6000 --- supercritical carbon dioxide --- solid dispersions --- dissolution rate --- amorphization --- 3D printing --- fused deposition modeling --- hot-melt extrusion --- solid dosage forms --- itraconazole --- mesoporous silica --- layer-by-layer --- FITC-peptide --- hyaluronic acid --- multilayer film --- host-guest interaction --- total alkaloids from Alstonia scholaris leaves --- mPEG-PLA --- microspheres --- drug release --- biocompatibility --- CO administration --- therapeutic agent --- pharmaceutical drugs --- heme oxygenase --- CO-releasing materials --- CO-releasing molecules --- organometallic complexes --- pharmacokinetic functions --- pathological role --- CO kinetic profile --- cellular targets --- GQDs --- real-time tracking --- optical-magneto nanoparticles --- in vivo --- ethylcellulose --- polymeric material --- cellulose derivative --- pharmaceutical excipient --- hydrogel --- drug delivery --- polymer --- immobilization of drug --- gelatin --- gastro-resistant --- films --- capsules --- structure --- sirolimus --- electrospinning --- polycaprolactone --- 3D matrix --- drug-eluting stents --- spray drying --- microparticles --- rupatadine fumarate --- orodispersible minitablets --- taste masking --- Bicalutamide --- Poloxamer® 407 --- Macrogol 6000 --- supercritical carbon dioxide --- solid dispersions --- dissolution rate --- amorphization --- 3D printing --- fused deposition modeling --- hot-melt extrusion --- solid dosage forms --- itraconazole


Book
Environmentally Friendly Polymeric Blends from Renewable Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials from renewable resources have attracted increasing attention in recent decades as a result of environmental concerns and due to the depletion of petroleum resources. Polymeric materials from renewable sources have a long history. They were used in ancient times and later accompanied the development of man and civilization. Currently, they are widespread in many areas of life and used, for example, in packaging and in the automotive, construction and pharmaceutical industries.The aim of this Special Issue is to highlight the progress in the manufacturing, characterization, and applications of environmentally friendly polymeric blends from renewable resources. The following aspects were investigated: (i) synthesis of composites based on natural llers; (ii) chemical modi cation of polymers or fillers in order to improve interfacial interactions; (iii) potential applications of the biobased materials.

Keywords

Environmental science, engineering & technology --- lignin --- microspheres --- composites --- polymeric material --- fractionation --- porosity --- radiation grafting --- cotton linter --- phosphate adsorption --- dynamic studies --- bio-polyethylene --- barley straw --- thermomechanical fibers --- interface --- automotive industry --- natural fiber --- polypropylene --- stiffness --- curauá fibers --- microcrystalline cellulose (MCC) --- unsaturated polyester resins --- thermogravimetric analysis (TG) --- mechanical analysis --- dynamic mechanical analysis (DMA) --- LignoBoost® kraft lignin --- potentiometric sensors --- carbon nanotubes --- impedance spectroscopy --- transition metals --- rice nanofibers --- biocomposites --- casting --- mechanical properties --- thermal properties --- rigid polyurethane foams --- lignocellulosic materials --- filler --- chemical treatment --- mechanical characteristics --- pyrolysis process --- Caragana korshinskii biochar --- physicochemical properties --- adsorption characteristics --- nitrate nitrogen --- bio-oil --- polyurethanes --- hemp shives --- bio-filler --- oil impregnation --- sugar beet pulp --- thermal conductivity --- polyurethane composites --- lavender --- kaolinite --- hydroxyapatite --- high-ball milling process --- antibacterial activity --- wood-resin composites --- unsaturated polyester resin --- recycled PET --- wood flour --- renewable resources --- silver nanoparticles --- lignin --- microspheres --- composites --- polymeric material --- fractionation --- porosity --- radiation grafting --- cotton linter --- phosphate adsorption --- dynamic studies --- bio-polyethylene --- barley straw --- thermomechanical fibers --- interface --- automotive industry --- natural fiber --- polypropylene --- stiffness --- curauá fibers --- microcrystalline cellulose (MCC) --- unsaturated polyester resins --- thermogravimetric analysis (TG) --- mechanical analysis --- dynamic mechanical analysis (DMA) --- LignoBoost® kraft lignin --- potentiometric sensors --- carbon nanotubes --- impedance spectroscopy --- transition metals --- rice nanofibers --- biocomposites --- casting --- mechanical properties --- thermal properties --- rigid polyurethane foams --- lignocellulosic materials --- filler --- chemical treatment --- mechanical characteristics --- pyrolysis process --- Caragana korshinskii biochar --- physicochemical properties --- adsorption characteristics --- nitrate nitrogen --- bio-oil --- polyurethanes --- hemp shives --- bio-filler --- oil impregnation --- sugar beet pulp --- thermal conductivity --- polyurethane composites --- lavender --- kaolinite --- hydroxyapatite --- high-ball milling process --- antibacterial activity --- wood-resin composites --- unsaturated polyester resin --- recycled PET --- wood flour --- renewable resources --- silver nanoparticles


Book
Environmentally Friendly Polymeric Blends from Renewable Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials from renewable resources have attracted increasing attention in recent decades as a result of environmental concerns and due to the depletion of petroleum resources. Polymeric materials from renewable sources have a long history. They were used in ancient times and later accompanied the development of man and civilization. Currently, they are widespread in many areas of life and used, for example, in packaging and in the automotive, construction and pharmaceutical industries.The aim of this Special Issue is to highlight the progress in the manufacturing, characterization, and applications of environmentally friendly polymeric blends from renewable resources. The following aspects were investigated: (i) synthesis of composites based on natural llers; (ii) chemical modi cation of polymers or fillers in order to improve interfacial interactions; (iii) potential applications of the biobased materials.

Keywords

Environmental science, engineering & technology --- lignin --- microspheres --- composites --- polymeric material --- fractionation --- porosity --- radiation grafting --- cotton linter --- phosphate adsorption --- dynamic studies --- bio-polyethylene --- barley straw --- thermomechanical fibers --- interface --- automotive industry --- natural fiber --- polypropylene --- stiffness --- curauá fibers --- microcrystalline cellulose (MCC) --- unsaturated polyester resins --- thermogravimetric analysis (TG) --- mechanical analysis --- dynamic mechanical analysis (DMA) --- LignoBoost® kraft lignin --- potentiometric sensors --- carbon nanotubes --- impedance spectroscopy --- transition metals --- rice nanofibers --- biocomposites --- casting --- mechanical properties --- thermal properties --- rigid polyurethane foams --- lignocellulosic materials --- filler --- chemical treatment --- mechanical characteristics --- pyrolysis process --- Caragana korshinskii biochar --- physicochemical properties --- adsorption characteristics --- nitrate nitrogen --- bio-oil --- polyurethanes --- hemp shives --- bio-filler --- oil impregnation --- sugar beet pulp --- thermal conductivity --- polyurethane composites --- lavender --- kaolinite --- hydroxyapatite --- high-ball milling process --- antibacterial activity --- wood–resin composites --- unsaturated polyester resin --- recycled PET --- wood flour --- renewable resources --- silver nanoparticles --- n/a --- curauá fibers --- wood-resin composites


Book
Advanced Materials in Drug Release and Drug Delivery Systems
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Development of new drug molecules is costly and requires longitudinal, wide-ranging studies; therefore, designing advanced pharmaceutical formulations for existing and well-known drugs seems to be an attractive device for the pharmaceutical industry. Properly formulated drug delivery systems can improve pharmacological activity, efficacy and safety of the active substances. Advanced materials applied as pharmaceutical excipients in designing drug delivery systems can help solve problems concerning the required drug release—with the defined dissolution rate and at the determined site. Novel drug carriers enable more effective drug delivery, with improved safety and with fewer side effects. Investigations concerning advanced materials represent a rapidly growing research field in material/polymer science, chemical engineering and pharmaceutical technology. Exploring novel materials or modifying and combining existing ones is now a crucial trend in pharmaceutical technology. Eleven articles included in the the Special Issue “Advanced Materials in Drug Release and Drug Delivery Systems” present the most recent insights into the utilization of different materials with promising potential in drug delivery and into different formulation approaches that can be used in the design of pharmaceutical formulations.


Book
Advanced Materials in Drug Release and Drug Delivery Systems
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Development of new drug molecules is costly and requires longitudinal, wide-ranging studies; therefore, designing advanced pharmaceutical formulations for existing and well-known drugs seems to be an attractive device for the pharmaceutical industry. Properly formulated drug delivery systems can improve pharmacological activity, efficacy and safety of the active substances. Advanced materials applied as pharmaceutical excipients in designing drug delivery systems can help solve problems concerning the required drug release—with the defined dissolution rate and at the determined site. Novel drug carriers enable more effective drug delivery, with improved safety and with fewer side effects. Investigations concerning advanced materials represent a rapidly growing research field in material/polymer science, chemical engineering and pharmaceutical technology. Exploring novel materials or modifying and combining existing ones is now a crucial trend in pharmaceutical technology. Eleven articles included in the the Special Issue “Advanced Materials in Drug Release and Drug Delivery Systems” present the most recent insights into the utilization of different materials with promising potential in drug delivery and into different formulation approaches that can be used in the design of pharmaceutical formulations.


Book
Environmentally Friendly Polymeric Blends from Renewable Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials from renewable resources have attracted increasing attention in recent decades as a result of environmental concerns and due to the depletion of petroleum resources. Polymeric materials from renewable sources have a long history. They were used in ancient times and later accompanied the development of man and civilization. Currently, they are widespread in many areas of life and used, for example, in packaging and in the automotive, construction and pharmaceutical industries.The aim of this Special Issue is to highlight the progress in the manufacturing, characterization, and applications of environmentally friendly polymeric blends from renewable resources. The following aspects were investigated: (i) synthesis of composites based on natural llers; (ii) chemical modi cation of polymers or fillers in order to improve interfacial interactions; (iii) potential applications of the biobased materials.


Book
Outdoor Insulation and Gas Insulated Switchgears
Authors: ---
ISBN: 3036559426 3036559418 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on theoretical and practical developments in the performance of high-voltage transmission line against atmospheric pollution and icing. Modifications using suitable fillers are also pinpointed to improve silicone rubber insulation materials. Very fast transient overvoltage (VFTO) mitigation techniques, along with some suggestions for reliable partial discharge measurements under DC voltage stresses inside gas-insulated switchgears, are addressed. The application of an inductor-based filter for the protective performance of surge arresters against indirect lightning strikes is also discussed.

Keywords

Technology: general issues --- History of engineering & technology --- dynamic pollution model --- reference insulators --- insulator structure coefficient --- natural pollution tests --- finite element method --- partial discharge --- protrusion --- gas-insulated system --- HVDC --- SF6 --- synthetic air --- insulator --- pollution --- humidity --- equivalent salt deposit density (ESDD) --- non-soluble deposit density (NSDD) --- leakage current --- post-installation study --- double exponential function --- indirect lightning --- medium voltage transformer --- spark gap --- filtered surge arrester --- energy-controlled switch --- ice-covered insulator --- characteristics extraction --- image processing method --- median filtering method --- entropy threshold segmentation --- modified Canny operator --- region growth method --- icing degree --- gas-insulated substations --- VFTO --- EMF modeling --- transient ground potential rise --- polymeric material --- thermoplastic --- thermoset --- elastomer --- epoxy resin --- electrical properties --- mechanical properties --- high-voltage applications --- partial discharges --- textured insulator --- artificial clean fog test --- dry bands --- discharges --- partial arcs --- monitoring --- HVDC outdoor insulators --- silicone rubber --- fumed silica --- ground silica --- dry-band arcing --- erosion performance --- outdoor insulators --- transmission and distribution --- pollution performance --- tracking --- erosion resistance --- overhead power lines --- atmospheric icing --- power outage --- anti-icing --- de-icing --- line design --- passive devices --- coatings --- mechanical methods --- thermal methods --- composite crossarm --- pollution flashover characteristics --- core diameter --- hydrophobicity --- umbrella structure --- voltage gradient --- flashover --- inception voltage --- arc propagation --- finite element method (FEM) --- n/a

Listing 1 - 7 of 7
Sort by