Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
Nano/micro-size particles are widely applied in various fields. Among the various particles, silver particles are considered among the most prominent nanomaterials in the biomedical and industrial sectors because of their favorable physical, chemical, and biological characteristics. Thus, numerous studies have been conducted to evaluate their properties and utilize them in various applications, such as diagnostics, anti-bacterial and anti-cancer therapeutics, and optoelectronics. The properties of silver particles are strongly influenced by their size, morphological shape, and surface characteristics, which can be modified by diverse synthetic methods, reducing agents, and stabilizers. This Special Issue provides a range of original contributions detailing the synthesis, modification, properties, and applications of silver materials. Nine outstanding papers describing examples of the most recent advances in silver nano/microparticles are included. Silver nano/micro-size particles have many potential advantages as next-generation materials in various areas, including nanomedicine. This Special Issue might be helpful to understand the value of silver particles in the biomedical and industrial fields
n/a --- membrane --- bacteria --- cyclodextrin --- silver nanomaterial --- drug delivery --- transparent conductive film --- cytocompatibility --- surface free energy --- administration route --- sericin --- biosensor --- uptake --- substrate modification --- silver ion --- AgNPs --- mechanical properties --- cell culture --- titanium alloy --- Au–Ag alloy --- silver shell --- moderate sintering --- wound dressing --- polymer nanocomposite --- DNA damage --- surface morphology --- reactive oxygen species (ROS) --- flexible and printed electronics --- plants --- reactive oxygen species --- mechanism --- optoelectronics --- cytotoxicity --- photonic sintering --- synthesis --- silver nanoparticle --- doxorubicin (DOX) --- food packaging --- SERS detection --- nanomedicine --- antimicrobial activity --- nanogaps --- TNFR1 --- silica template --- silver ions release --- diagnostics --- phytotoxicity --- polydopamine --- silver nanoparticles --- tumor necrosis factor --- protective agent --- characterization --- Au-Ag alloy
Choose an application
This book, entitled “Plasma-Based Synthesis and Modification of Nanomaterials” is a collection of nine original research articles devoted to the application of different atmospheric pressure (APPs) and low-pressure (LPPs) plasmas for the synthesis or modification of various nanomaterials (NMs) of exceptional properties. These articles also show the structural and morphological characterization of the synthesized NMs and their further interesting and unique applications in different areas of science and technology. The readers interested in the capabilities of plasma-based treatments will quickly be convinced that APPs and LPPs enable one to efficiently synthesize or modify differentiated NMs using a minimal number of operations. Indeed, the presented procedures are eco-friendly and usually involve single-step processes, thus considerably lowering labor investment and costs. As a result, the production of new NMs and their functionalization is more straightforward and can be carried out on a much larger scale compared to other methods and procedures involving complex chemical treatments and processes. The size and morphology, as well as the structural and optical properties of the resulting NMs are tunable and tailorable. In addition to the desirable and reproducible physical dimensions, crystallinity, functionality, and spectral properties of the resultant NMs, the NMs fabricated and/or modified with the aid of APPs are commonly ready-to-use prior to their specific applications, without any initial pre-treatments.
plasma–liquid interactions --- n/a --- plasma synthesis --- pre-treatment --- liquid phase plasma --- anode materials --- CO-hydrogenation --- nanoparticles --- Clavibacter michiganensis --- cold atmospheric-pressure plasma --- mercury ion --- dielectric barrier discharge --- low-temperature Fischer–Tropsch --- nanocellulose --- nanoparticle --- solution plasma --- activated carbon powder --- ionic liquid --- nitrogen-doped carbon --- heat transfer --- polymer nanocomposite --- Dickeya solani --- stabilizer --- plant protection --- pulsed plasma in liquid --- Xanthomonas campestris pv. campestris --- Pd-Fe alloy --- quercetin --- iron oxide nanoparticle --- phytopathogens --- pseudo-capacitive characteristics --- submerged liquid plasma --- atmospheric pressure plasma --- plasma treatment --- Ralstonia solanacearum --- batteries --- nano-catalysts --- direct current atmospheric pressure glow discharge --- nanostructures --- Erwinia amylovora --- carbon dots --- silicon --- capacitively coupled plasma --- necrosis --- upconversion --- quarantine --- plasma-liquid interactions --- low-temperature Fischer-Tropsch
Choose an application
This highly informative and carefully presented book covers the most recent advances as well as comprehensive reviews addressing novel and state-of-the-art topics from active researchers in innovative advanced materials and hybrid materials, concerning not only their synthesis, preparation, and characterization but especially focusing on the applications of such materials with outstanding performance.
Technology: general issues --- non-isothermal crystallisation kinetics --- multi-modal polymer --- graphene-based polymer nanocomposite --- carbon black fillers. --- n/a --- Li4Ti5O12 --- magnesium batteries --- cathodes --- MgCl2 --- garnet --- dual substitution --- spark plasma sintering --- conductivity --- activated carbon --- steam activation --- low-density polyethylene --- electric double layer capacitor --- solid fluoride electrolytes --- ceramics --- LaF3 --- fluorine-ion batteries --- metal current collectors --- electrochemical stability --- cyclic voltammetry --- copper-manganese alloy --- energy storage --- supercapacitor --- graphitic carbon nitride --- TiO2 nanotube --- MoS2 --- Al2O3 --- atomic layer deposition --- Li-ion microbatteries --- nano-catalyst --- noble metals --- TUD-1 --- mesoporous silica --- CO-oxidation --- air purification --- W2C --- WS2 --- hydrothermal --- nanoflowers --- lithium-ion batteries --- CdTe --- nanocrystal --- solar cells --- Spiro --- biomass carbon electrodes --- battery and supercapacitors --- structure–performance relationship --- Lithium-ion batteries --- LiMn2O4 nanoparticles --- Mg-doped --- kinetic and thermodynamic --- thermogravimetric analysis --- Pechini-type sol–gel process --- structure-performance relationship --- Pechini-type sol-gel process
Choose an application
Graphene-polymer nanocomposites continue to gain interest in diverse scientific and technological fields. Graphene-based nanomaterials present the advantages of other carbon nanofillers, like electrical and thermal conductivity, while having significantly lower production costs when compared to materials such as carbon nanotubes, for instance. In addition, in the oxidized forms of graphene, the large specific area combined with a large quantity of functionalizable chemical groups available for physical or chemical interaction with polymers, allow for good dispersion and tunable binding with the surrounding matrix. Other features are noteworthy in graphene-based nanomaterials, like their generally good biocompatibility and the ability to absorb near-infrared radiation, allowing for the use in biomedical applications, such as drug delivery and photothermal therapy.This Special Issue provides an encompassing view on the state of the art of graphene-polymer composites, showing how current research is dealing with new and exciting challenges. The published papers cover topics ranging from novel production methods and insights on mechanisms of mechanical reinforcement of composites, to applications as diverse as automotive and aeronautics, cancer treatment, anticorrosive coatings, thermally conductive fabrics and foams, and oil-adsorbent aerogels.
Technology: general issues --- graphene oxide --- polymer composite fiber --- interfacial bonding --- polypropylene --- thermal stability --- graphene --- unsaturated polyester resins --- tung oil --- biobased polymer nanocomposites --- in situ melt polycondensation --- graphene polymer matrix composite --- polyamide 66 --- elongational flow --- hydrogen bond --- poly(trimethylene terephthalate) --- electrospinning --- composite fiber --- morphology --- crystallization --- electrical conductivity --- mechanical property --- elastic recovery --- cellulose nanofibers --- polyvinyl alcohol --- directional freeze-drying --- oil absorption --- graphene oxide–platinum nanoparticles nanocomposites --- prostate cancer --- cytotoxicity --- oxidative stress --- mitochondrial membrane potential --- DNA damage --- conducting polymer --- PANI --- LEIS --- corrosion --- fabric --- cellulose nanocrystal --- thermal conductivity --- adhesives --- cohesive zone model --- finite element method --- graphene-polymer nanocomposite --- graphene/polymer interface --- molecular dynamics --- regressive softening law --- polysulfone foams --- tortuosity --- water vapor induced phase separation --- scCO2 --- toughening mechanisms --- graphene nanoplatelets --- recycled rubber --- Halpin–Tsai --- SEM --- light emitting diode --- phototherapy --- polyethylene glycol --- thermal reduction --- n/a --- graphene oxide-platinum nanoparticles nanocomposites --- Halpin-Tsai
Choose an application
This highly informative and carefully presented book covers the most recent advances as well as comprehensive reviews addressing novel and state-of-the-art topics from active researchers in innovative advanced materials and hybrid materials, concerning not only their synthesis, preparation, and characterization but especially focusing on the applications of such materials with outstanding performance.
non-isothermal crystallisation kinetics --- multi-modal polymer --- graphene-based polymer nanocomposite --- carbon black fillers. --- n/a --- Li4Ti5O12 --- magnesium batteries --- cathodes --- MgCl2 --- garnet --- dual substitution --- spark plasma sintering --- conductivity --- activated carbon --- steam activation --- low-density polyethylene --- electric double layer capacitor --- solid fluoride electrolytes --- ceramics --- LaF3 --- fluorine-ion batteries --- metal current collectors --- electrochemical stability --- cyclic voltammetry --- copper-manganese alloy --- energy storage --- supercapacitor --- graphitic carbon nitride --- TiO2 nanotube --- MoS2 --- Al2O3 --- atomic layer deposition --- Li-ion microbatteries --- nano-catalyst --- noble metals --- TUD-1 --- mesoporous silica --- CO-oxidation --- air purification --- W2C --- WS2 --- hydrothermal --- nanoflowers --- lithium-ion batteries --- CdTe --- nanocrystal --- solar cells --- Spiro --- biomass carbon electrodes --- battery and supercapacitors --- structure–performance relationship --- Lithium-ion batteries --- LiMn2O4 nanoparticles --- Mg-doped --- kinetic and thermodynamic --- thermogravimetric analysis --- Pechini-type sol–gel process --- structure-performance relationship --- Pechini-type sol-gel process
Choose an application
Multifunctional hybrid materials based on polymers have already displayed excellent commitment in addressing and presenting solutions to existing demands in priority areas such as the environment, human health, and energy. These hybrid materials can lead to unique superior multifunction materials with a broad range of envisaged applications. However, their design, performance, and practical applications are still challenging. Thus, it is highly advantageous to provide a breakthrough in state-of-the-art manufacturing and scale-up technology to design and synthesize advanced multifunctional hybrid materials based on polymers with improved performance.The main objective of this interdisciplinary book is to bring together, at an international level, high-quality elegant collection of reviews and original research articles dealing with polymeric hybrid materials within different areas such as the following:- Biomaterials chemistry, physics, engineering, and processing;- Polymer chemistry, physics and engineering;- Organic chemistry;- Composites science;- Colloidal chemistry and physics;- Porous nanomaterials science;- Energy storage; and- Automotive and aerospace manufacturing.
HPMC --- galantamine hydrobromide (GH) --- pectin --- hydrogel --- methylene bisacrylamide --- dementia --- PLLA --- chitosan --- basil oil --- active packaging --- films --- barrier properties --- antioxidant properties --- nanodielectrics --- crosslinked polyethylene --- auxiliary crosslinker --- electrical tree --- dielectric breakdown strength --- ionic liquid --- nanofiller --- polymer nanocomposite --- thermal --- mechanical --- chemical --- concrete --- basalt fiber --- epoxy resin --- alginate --- raised temperature --- compressive strength --- self-compacting concrete --- self-consolidating concrete --- waste alumina --- nano alumina --- nanoparticles --- MWCNTs --- horizontal axis wind turbine --- finite element analysis --- Ansys --- lung cancer --- toxicity --- surface modification --- hybrid nanocarriers --- dissipative particle dynamics --- Nafion --- mesoscale morphology --- poly(1-vinyl-1,2,4-triazole) --- poly(vinylphosphonic acid) --- Friction Riveting --- metal-polymer hybrid joints --- friction-based multi-material connections --- anchoring FE modelling --- rivet failure modes --- carbon nanotube --- controlled residence time --- melt mixing --- polymer composites --- percolation network --- n/a --- silica nanoparticles --- Pickering emulsion polymerization --- microspheres --- hybrid monoliths
Choose an application
Carbon-based nanomaterials such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes, and other nano-sized carbon allotropes have recently attracted a lot of attention among the scientific community due to their enormous potential for a wide number of applications arising from their large specific surface area, high electrical and thermal conductivity, and good mechanical properties. The combination of carbon nanomaterials with polymers leads to new nanocomposites with improved structural and functional properties due to synergistic effects. In particular, the properties of carbon-based polymer nanocomposites can be easily tuned by carefully controlling the carbon nanomaterial synthesis route and additionally the versatile synergistic interactions amongst the nanomaterials and polymers. This book provides selected examples of the most recent advances regarding carbon nanomaterial-reinforced polymeric composites. It includes the most representative types of polymeric matrices and covers aspects of new processing techniques, novel surface modifications of carbon nanomaterials and their applications in diverse fields, in particular in electronics and energy storage.
multi walled carbon nanotubes --- polyacrylonitrile --- nascent fiber --- thermal properties --- morphological structure --- nanocomposites --- graphene --- melt processing --- mechanical properties --- electrical conductivity --- electrostatic spraying --- multi-walled carbon nanotubes --- waterborne polyurethane coating --- dispersity --- surface hardness --- wear rate --- friction coefficient --- in-mold decoration injection molding --- microcellular injection molding --- surface quality --- warpage --- multiwalled carbon nanotube --- hyaluronic acid --- microfibers --- wet-spinning --- microstructures --- tensile properties --- Ag --- CNT --- flexible supercapacitor electrode --- polymer conductive film --- cellulose acetate membrane --- PANI --- graphene oxide --- hexamethylene diisocyanate --- nanocomposite --- thermal stability --- polydiphenylamine-2-carboxylic acid --- single-walled carbon nanotubes --- conjugated polymers --- in situ oxidative polymerization --- hybrid nanocomposites --- polypropylene --- carbon nanotube --- titanium dioxide --- reduced graphene oxide --- polyurethane foam --- flexible electronics --- pressure sensing --- polyethyleneimine --- thermoelectric properties --- carrier type --- Paal-Knorr reaction --- polyketone --- carbon nanotubes --- Diels-Alder --- click-chemistry --- hydrogen bonding --- self-healing --- re-workability --- recycling --- Joule heating --- flexible electrode --- cross-linked acrylamide/alginate --- tensile strength --- impedance spectroscopy --- polymer electrolyte --- Li-ion micro-batteries --- flexible anode --- pre-lithiation --- carbon-based polymer nanocomposite --- energy storage --- fuel cell --- electrochemical devices --- n/a
Choose an application
Graphene-polymer nanocomposites continue to gain interest in diverse scientific and technological fields. Graphene-based nanomaterials present the advantages of other carbon nanofillers, like electrical and thermal conductivity, while having significantly lower production costs when compared to materials such as carbon nanotubes, for instance. In addition, in the oxidized forms of graphene, the large specific area combined with a large quantity of functionalizable chemical groups available for physical or chemical interaction with polymers, allow for good dispersion and tunable binding with the surrounding matrix. Other features are noteworthy in graphene-based nanomaterials, like their generally good biocompatibility and the ability to absorb near-infrared radiation, allowing for the use in biomedical applications, such as drug delivery and photothermal therapy.This Special Issue provides an encompassing view on the state of the art of graphene-polymer composites, showing how current research is dealing with new and exciting challenges. The published papers cover topics ranging from novel production methods and insights on mechanisms of mechanical reinforcement of composites, to applications as diverse as automotive and aeronautics, cancer treatment, anticorrosive coatings, thermally conductive fabrics and foams, and oil-adsorbent aerogels.
graphene oxide --- polymer composite fiber --- interfacial bonding --- polypropylene --- thermal stability --- graphene --- unsaturated polyester resins --- tung oil --- biobased polymer nanocomposites --- in situ melt polycondensation --- graphene polymer matrix composite --- polyamide 66 --- elongational flow --- hydrogen bond --- poly(trimethylene terephthalate) --- electrospinning --- composite fiber --- morphology --- crystallization --- electrical conductivity --- mechanical property --- elastic recovery --- cellulose nanofibers --- polyvinyl alcohol --- directional freeze-drying --- oil absorption --- graphene oxide–platinum nanoparticles nanocomposites --- prostate cancer --- cytotoxicity --- oxidative stress --- mitochondrial membrane potential --- DNA damage --- conducting polymer --- PANI --- LEIS --- corrosion --- fabric --- cellulose nanocrystal --- thermal conductivity --- adhesives --- cohesive zone model --- finite element method --- graphene-polymer nanocomposite --- graphene/polymer interface --- molecular dynamics --- regressive softening law --- polysulfone foams --- tortuosity --- water vapor induced phase separation --- scCO2 --- toughening mechanisms --- graphene nanoplatelets --- recycled rubber --- Halpin–Tsai --- SEM --- light emitting diode --- phototherapy --- polyethylene glycol --- thermal reduction --- n/a --- graphene oxide-platinum nanoparticles nanocomposites --- Halpin-Tsai
Choose an application
This highly informative and carefully presented book covers the most recent advances as well as comprehensive reviews addressing novel and state-of-the-art topics from active researchers in innovative advanced materials and hybrid materials, concerning not only their synthesis, preparation, and characterization but especially focusing on the applications of such materials with outstanding performance.
Technology: general issues --- non-isothermal crystallisation kinetics --- multi-modal polymer --- graphene-based polymer nanocomposite --- carbon black fillers. --- Li4Ti5O12 --- magnesium batteries --- cathodes --- MgCl2 --- garnet --- dual substitution --- spark plasma sintering --- conductivity --- activated carbon --- steam activation --- low-density polyethylene --- electric double layer capacitor --- solid fluoride electrolytes --- ceramics --- LaF3 --- fluorine-ion batteries --- metal current collectors --- electrochemical stability --- cyclic voltammetry --- copper-manganese alloy --- energy storage --- supercapacitor --- graphitic carbon nitride --- TiO2 nanotube --- MoS2 --- Al2O3 --- atomic layer deposition --- Li-ion microbatteries --- nano-catalyst --- noble metals --- TUD-1 --- mesoporous silica --- CO-oxidation --- air purification --- W2C --- WS2 --- hydrothermal --- nanoflowers --- lithium-ion batteries --- CdTe --- nanocrystal --- solar cells --- Spiro --- biomass carbon electrodes --- battery and supercapacitors --- structure-performance relationship --- Lithium-ion batteries --- LiMn2O4 nanoparticles --- Mg-doped --- kinetic and thermodynamic --- thermogravimetric analysis --- Pechini-type sol-gel process
Choose an application
Graphene-polymer nanocomposites continue to gain interest in diverse scientific and technological fields. Graphene-based nanomaterials present the advantages of other carbon nanofillers, like electrical and thermal conductivity, while having significantly lower production costs when compared to materials such as carbon nanotubes, for instance. In addition, in the oxidized forms of graphene, the large specific area combined with a large quantity of functionalizable chemical groups available for physical or chemical interaction with polymers, allow for good dispersion and tunable binding with the surrounding matrix. Other features are noteworthy in graphene-based nanomaterials, like their generally good biocompatibility and the ability to absorb near-infrared radiation, allowing for the use in biomedical applications, such as drug delivery and photothermal therapy.This Special Issue provides an encompassing view on the state of the art of graphene-polymer composites, showing how current research is dealing with new and exciting challenges. The published papers cover topics ranging from novel production methods and insights on mechanisms of mechanical reinforcement of composites, to applications as diverse as automotive and aeronautics, cancer treatment, anticorrosive coatings, thermally conductive fabrics and foams, and oil-adsorbent aerogels.
Technology: general issues --- graphene oxide --- polymer composite fiber --- interfacial bonding --- polypropylene --- thermal stability --- graphene --- unsaturated polyester resins --- tung oil --- biobased polymer nanocomposites --- in situ melt polycondensation --- graphene polymer matrix composite --- polyamide 66 --- elongational flow --- hydrogen bond --- poly(trimethylene terephthalate) --- electrospinning --- composite fiber --- morphology --- crystallization --- electrical conductivity --- mechanical property --- elastic recovery --- cellulose nanofibers --- polyvinyl alcohol --- directional freeze-drying --- oil absorption --- graphene oxide-platinum nanoparticles nanocomposites --- prostate cancer --- cytotoxicity --- oxidative stress --- mitochondrial membrane potential --- DNA damage --- conducting polymer --- PANI --- LEIS --- corrosion --- fabric --- cellulose nanocrystal --- thermal conductivity --- adhesives --- cohesive zone model --- finite element method --- graphene-polymer nanocomposite --- graphene/polymer interface --- molecular dynamics --- regressive softening law --- polysulfone foams --- tortuosity --- water vapor induced phase separation --- scCO2 --- toughening mechanisms --- graphene nanoplatelets --- recycled rubber --- Halpin-Tsai --- SEM --- light emitting diode --- phototherapy --- polyethylene glycol --- thermal reduction
Listing 1 - 10 of 14 | << page >> |
Sort by
|